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Abstract—Fine-grained emotion recognition can model the
temporal dynamics of emotions, which is more precise than pre-
dicting one emotion retrospectively for an activity (e.g., video clip
watching). Previous works require large amounts of continuously
annotated data to train an accurate recognition model, how-
ever experiments to collect such large amounts of continuously
annotated physiological signals are costly and time-consuming.
To overcome this challenge, we propose an Emotion recognition
algorithm based on Deep Siamese Networks (EmoDSN) which can
rapidly converge on a small amount of training data, typically less
than 10 samples per class (i.e., < 10 shot). EmoDSN recognizes
fine-grained valence and arousal (V-A) labels by maximizing the
distance metric between signal segments with different V-A labels.
We tested EmoDSN on three different datasets collected in three
different environments: desktop, mobile and HMD-based virtual
reality, respectively. The results from our experiments show
that EmoDSN achieves promising results for both one-dimension
binary (high/low V-A, 1D-2C) and two-dimensional 5-class (four
quadrants of V- A space + neutral, 2D-5C) classification. We get
an averaged accuracy of 76.04%, 76.62% and 57.62% for 1D-2C
valence, 1D-2C arousal, and 2D-5C, respectively, by using only
5 shots of training data. Our experiments show that EmoDSN
can achieve better results if we select training samples from
the changing points of emotion or the ending moments of video
watching.

Index Terms—emotion recognition; deep siamese network;
physiological signals; small data

I. INTRODUCTION

A growing number of emotion recognition algorithms were
developed in recent years [1]–[3] to model the temporal
dynamics of emotion states of users. The accurate recog-
nition of emotions while users consume different types of
media content (e.g., videos, music, movies) can help content
providers to better understand users’ emotions towards the
media content they provide and adjust it accordingly [4].
Unlike recognizing only one emotion label for a video clip
(i.e., discrete emotion recognition), fine-grained (normally 0.5s
to 4s according to prior emotion duration measures [1], [5],
[6]) emotion recognition can capture the time-varying nature of
human emotions [7]–[9]. Thus, the predictions are temporally
more precise compared with discrete emotion recognition.

To model the temporal dynamics of emotions, physiological
signals such as Electrodermal Activity (EDA), Blood Volume
Pulse (BVP), Skin Temperature (TEMP) and Heart Rate (HR)
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are widely used by previous works [1], [2] as the input
signals. These signals can represent the neural activities from
both the autonomic nervous system (EDA and TEMP) and
the cardiovascular system (BVP and HR). These activities
provide sufficient information for V-A recognition [10], [11]
according to James-Lange theory [12]. They are also easy to
measure using unobtrusive and wearable sensing devices such
as wristbands or smartwatches (e.g., Microsoft MS Band).

Previous works [1], [3], [13], [14] on fine-grained emo-
tion recognition rely on large amounts of training data with
fine-grained emotion labels. These labels are required to be
collected in a fine level of granularity (normally the same or
similar frequency as the input signal) to train the recognition
algorithms [15]. To collect such fine-grained emotion labels,
researchers either ask users themselves to label their emotions
in real-time while watching videos [8], [16] or invite external
annotators to label users’ emotions segment-by-segment (e.g.,
using videos of users’ facial expressions [17]) after watching
the videos [17], [18]. However, it is challenging to collect large
amounts of annotated signals using any of the methods. Asking
users to momentarily self-report their emotions can incur more
mental workload and result in user fatigue for longer durations
(e.g., a two-hour film). For external annotators, at least three
annotators are usually required to get a meaningful agreement
between them (e.g., high Kappa score) [17], [19]. This requires
extra labeling effort and is costly when annotating large
amounts of signals. Thus, the experiments to collect large
amounts of continuously annotated signals are time-consuming
(require additional annotation time from users) and costly
(hiring professional annotators is expensive).

The challenge of collecting large amounts of annotated sig-
nals has motivated researchers to explore Few-Shot Learning
(FSL) algorithms [20] for emotion recognition. FSL algorithms
are designed to converge on a small amount of training data
and provide relatively accurate prediction results. However,
current FSL algorithms are geared towards discrete emotion
recognition [21] using static data modalities such as images
[22]. Thus, it is challenging to directly apply the existing FSL
algorithms for fine-grained emotion recognition using physi-
ological signals. First of all, there can be temporal mismatch
between physiological signals and the fine-grained self-reports
(i.e., the delay of annotation). Previous works [23]–[25] found
that there are time delays between an emotional event and
its annotation. The time of the delay ranges from 2s to 4s
according to the experiments of Huang et al. [23]. Secondly,
some fine-grained samples in the training set can be labeled
incorrectly [1]. The mislabeled samples can be the result
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of a distraction of users when self-reporting their emotions
momentarily or from a temporary failure of the system when
collecting the labels. Both the reaction delay and mislabeled
training samples can result in a mismatch between training
samples and the corresponding ground truth labels. Since we
only use few annotated samples for training, the mismatch
can cause mis-convergence and overfitting for the recognition
model. Previous works [23], [26] show that both the delay
of annotation and mislabeled training samples can lower the
accuracy if we directly build the recognition model between
input signals and fine-grained emotion labels.

To overcome these challenges, this paper proposes a few-
shot learning algorithm (EmoDSN1) for fine-grained emo-
tion recognition on small data using physiological signals.
EmoDSN is designed based on Deep Siamese Network (DSN),
which can rapidly converge on a small amount of training data
(typically < 10 samples per class (i.e., 10 shot) [27]). It can
provide recognition results at fine level of granularity (every
2s) by maximizing the distance metric between signal seg-
ments with different emotion labels. To overcome the temporal
mismatch between signals and emotion labels, we design an
embedding network to automatically compensate for the delay
of fine-grained emotion labels. To avoid overfitting caused
by mislabeled samples, we also develop the distance fusion
module which can merge the distance metrics learned from
different training samples. This work makes the following
contributions for multimedia community:
• We propose an end-to-end few-shot learning algorithm

which can predict V-A in fine-level of granularity (2s) using
physiological signals trained by a small amount (< 10 shot)
of data. The algorithm can help researchers to understand
the personalized experience of users watching videos by
collecting only a small amount of data for training.

• We test our algorithm on three datasets (CASE [16],
MERCA [8] and CEAP-360VR [28]) collected in three
environments (desktop, mobile, and HMD-based Virtual
Reality (VR)). Recognition results show good performance
for both personalized binary (1D-2C) and 5-class (2D-5C)
classification on all three datasets. we get an averaged
accuracy of 76.04%, 76.62% and 57.62% for 1D-2C valence,
1D-2C arousal and 2D-5C respectively by using 5 shot
of training data. Our algorithm enables finding an optimal
trade-off between recognition accuracy and collecting small
amounts of continuously annotated physiological signals.

• We test state-of-the-art FSL algorithms [29]–[31] and com-
pare their performance with EmoDSN. Results show that
the recognition accuracy of EmoDSN outperforms other
FSL algorithms. Our ablation study also shows that the
embedding network (+11.86%) and distance fusion module
(+22.32%) we design can significantly improve the accuracy.

• We run experiments to identify training samples from which
temporal moments of video watching (e.g., begin, end and
changing points [32]) can better represent the distribution
of emotion labels and result in better recognition results.
We find that the changing points of emotion annotation and
the ending moments of video watching are better temporal

1https://github.com/cwi-dis/EmoDSN

moments for training samples (result in higher recognition
accuracy) when only few annotated samples are available.

II. RELATED WORK

In this section, we first review the previous works on
emotion recognition on small data and then narrow our scope
to few-shot learning based emotion recognition.

A. Emotion recognition on small data

Fine-grained emotion recognition requires algorithms to
predict multiple emotion states by relying on signals within
one certain time interval. To train such recognition models,
previous works [1], [3], [13], [14] need large amounts of data
which are annotated in fine-level of granularity. Specifically,
they usually require more than 90% of the annotated data
in the datasets (e.g., CASE [16], RECOLA [17], K-EmoCon
[19], MERCA [1]) to train an accurate recognition model.
That means users themselves or external annotators have
to continuously annotate 3 to 9 hours (e.g., CASE: 9.5h,
RECOLA: 3.4 hours, K-EmoCon: 5.3 hours, MERCA: 7.5
hours) to obtain an adequate amount of data for training. That
requires large amounts of labeling effort for either external
annotators or users themselves. Thus, it is challenging to
collect large amounts of continuously annotated data for fine-
grained emotion recognition.

To overcome this challenge, previous works have applied
two kinds of methods to build recognition models with a
small amount of training data. The first kind of method [33]–
[37] builds a generative model such as Generative Adversarial
Network (GAN) to generate artificial signals which obey the
distribution of specific emotion categories. Then the recogni-
tion models are trained with the hybrid of synthetic and real
signals. For example, Chen [33] et al. design a GAN model
to generate ECG samples with the corresponding emotion
labels. Their experiments show that the augmented dataset help
to increase the accuracy by 5% compared with using only
original data. Previous works on other physiological signals
(i.e., Electroencephalography (EEG) [34], Electrooculography
(EOG) [35], Blood Volume Pulse (BVP) [36], saccadic eye
movement [37]) have also demonstrated that the augmented
signals can promote the recognition accuracy by providing
more data to train the recognition model. However, to generate
generalizable distributions for different emotion categories, the
generative model itself also needs large amounts of signals
with continuous annotation [38].

The second kind of method designs machine learning
methods which can be trained by a small amount of ground
truth labels. For example, Romeo et al. [39] implement four
weakly-supervised learning algorithms to estimate fine-grained
emotion states from post-stimuli emotion labels (i.e., the labels
user annotate after each video watching). The methods they
develop can identify which fine-grained signal segments (i.e.
instances) can represent the post-stimuli valence and arousal
[40]. Similar approach is used by Pei et al. [41] to model
the temporal dynamics of emotional states. In their work, a
weakly-supervised Bidirectional LSTM [42] is designed to
predict fine-grained emotion labels according to the probability

https://github.com/cwi-dis/EmoDSN
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for that instance to predict the corresponding coarse labels.
Although the weakly-supervised methods can predict fine-
grained emotion labels with less amount of annotation, they
can only identify the annotated (e.g., post-stimuli) emotion
from the baseline emotion (e.g., neutral) and categorize all
the remaining moments as part of the baseline. Thus, they can
only predict two emotion states (i.e., the annotated emotion
and neutral) in fine-level of granularity.

B. Few-shot learning based emotion recognition

Few-shot learning (FSL) is a kind of machine learning
method which can learn a task from few (typically < 10 sam-
ples per class [30], [31], [43]) annotated samples. Compared
with weakly-supervised learning methods, FSL algorithms
build direct mappings between fine-grained emotion labels
and input signals, which can provide prediction with multiple
emotion categories. FSL has been applied in previous works on
emotion recognition using a variety of data modalities such as
images [22]. To learn the representation of emotions using few
annotated samples, researchers need to design different embed-
ding networks for different data modalities. For example, Zhan
et al. [22] design an affective structural embedding framework
to predict the emotions of images. Their embedding network
can learn an intermediate space which bridges the affective
gap between low-level and high-level visual semantics.

For physiological signals, Jiang et al. [21] develop an FSL
algorithm to recognize the level of stress using ECG, EDA and
respiratory (RESP) signals. Their method, which is based on
the Matching Network [29], achieves 80% accuracy trained
by only 30% of the signals (i.e., 31.5 mins) in WESAD
dataset [44]. Patane et al. [27] propose a siamese network
based arousal recognition algorithm using ECG signals. Their
algorithm obtains +21.5% accuracy increase compared to
state-of-the-art machine learning algorithms trained with a
subject-dependent model. Siamese network [45] is a kind of
FSL algorithm which learns the difference between samples
with different labels. Compared with other FSL algorithms
(e.g., the Matching Network [29] used by Jiang et al.), Siamese
network uses the pair-by-pair learning structure (learn the
difference between two samples in two categories) instead of
using the one-to-many learning structure (learn the difference
between one sample and samples in other categories). It has
been widely used for emotion recognition because of its simple
and interpretable structure [46]. For example, Hayale et al. [46]
use the Deep Siamese Neural (DSN) network [47] to recognize
6 basic emotions by facial expressions. For uni-dimensional
signals, DSN is also used by Feng et al. [48] to predict
low/medium/high arousal using speech signals. They obtain
43.4% accuracy trained with a subject-dependent model.

Although the previous works above provide useful insights
on FSL or DSN based emotion recognition, they only recog-
nize the overall emotion of an event (e.g., one video watching)
instead of the fine-grained emotion responses. Our work aims
to extend few-shot learning algorithms for emotion recognition
with fine-level of granularity.

III. DSN BASED EMOTION RECOGNITION

In this section, we propose an Emotion recognition al-
gorithm based on Deep Siamese Network (EmoDSN) to
discriminate fine-grained physiological signal segments (i.e.,
samples) with different emotion labels. EmoDSN learns the
difference between samples instead of building the precise
mapping between samples and emotion labels. Thus it can
converge with only few annotated samples as training data.
In the training stage, n samples are used for training. The
influences of different temporal moments of training samples
are discussed in section VI-B. EmoDSN contains four parts:
(1) Pre-processing: the obtained physiological signals are
firstly pre-processed using different filters to remove the noise
and artifacts in signals. (2) Embedding Network: the pre-
processed signals are then fed into an embedding network
to learn embeddings representing the difference of samples
between emotion labels. (3) Siamese Learning: the em-
beddings are learned based on the siamese structure. The
output of siamese learning is a distance metric which can
represent the probability that the two input samples belong
to the same emotion label. After the network is learned, the
embedding for each training sample will also be generated.
In the prediction stage, the pairwise distance metrics between
testing and training samples are fused by the (4) Distance
Fusion module to obtain the probability of the testing samples
corresponding to different emotion labels. The testing samples
are predicted as the emotion label with the highest probability.
The architecture of EmoDSN is shown in Fig. 1 Below we
provide a detailed description of EmoDSN.

A. Pre-processing

The physiological signals are first pre-processed by different
filters to remove the noises and artifacts. We follow the pre-
processing procedures which are widely used in previous
works [10]. For EDA signals, a low pass filter with a 2Hz
cutoff frequency is used to remove noise [49]. For the BVP
signals, a 4-order butterworth bandpass filter with cutoff fre-
quencies [30, 200] Hz is implemented to eliminate the bursts
[50]. For TEMP signals, we use an elliptic band-pass filter with
cutoff frequencies [0.005, 0.1] [51]. To decrease measurement
bias in different sessions (i.e., each subject under each video
stimulus), all signals for each session are normalized to [0,1]
using Min-Max scaling normalization.

B. Embedding network

The purpose of the embedding network is to automatically
extract features and learn latent vectors of samples to represent
the difference of samples between emotion labels. Previous
works [1], [52] on embedding networks for physiological
signals usually use the fine-grained segments of signals (i.e.,
samples) as the input. However, samples can be misaligned
with the fine-grained emotion labels due to the reaction delay
of continuous self-reporting. When continuously annotating
emotions towards videos, users first process the stimuli using
their senses (at ts) and then react to these changes (at ts + td)
which leads to a reaction delay (td). Thus, the sample at ts
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Fig. 1. The architecture of proposed EmoDSN

actually corresponds with emotion label at ts + td . To address
the problem of reaction delay, we use sliding windows to
propose multiple signal segments (sub-instance) with differ-
ent delays. Then, the embeddings of these sub-instances are
learned using a weakly-supervised multiple instance learning
network. Below, we describe the implementation details of
each module in the embedding network.

1) Sub-instance proposal: Suppose S = {sn}N
n=1,sn ∈ RL×C

is a set of physiological signals with the number of channels
C and the segmentation length L. For each sample sn, there
is a corresponding emotion label lm. To generate embeddings
which consider the delay of reaction, we reconstruct sn with
multiple sub-instances s′n = [sn1,sn2 . . .snK ]

T , where snk is a
sub-instance (i.e., each row of sample s′n) with the delay of tk.
We use sliding windows with the window length L and stride
k to generate the sub-instances. After that, the input of the
algorithm become S′ = {s′n}N

n=1,s
′
n ∈ RK×L×C, where K is the

number of sub-instances for each s′n.
2) Sub-instance level feature extraction: The features are

extracted from each sub-instance snk independently, which
means the feature extraction layers will not influence the
independence between each sub-instance (no features are ex-
tracted from multiple sub-instances). The independent feature
extraction guarantees that each sub-instance has a unique
instance gain after the embedding network. The instance gains
can help us understand the duration of delay with which the
network can best discriminate signal segments with different
emotion labels.

The features for each sub-instance are extracted using a 3-
layer (kernal size: L/2+1−L/4+1−L/8+1, channels: 4-8-
16) 1D-CNN [53]. We use a shallow structure (three layers)
instead of deep to avoid overfitting since each sub-instance
does not contain much information. We use large (i.e., equals
to half of the sub-instance length) convolutional kernels in
the shallow layer of the network. Large convolutional kernels
have a large receptive field across different sampling points in

one sub-instance thus can result in better recognition accuracy
[54]. However, the local information can also be omitted
by large kernels and result in the difficulty for the network
to converge [55]. Thus, we follow a classical strategy that
gradually increases the number of kernels and decreases the
size of them when the network goes deeper [56]. After sub-
instance feature extraction, the S′ = {s′n}N

n=1 is mapped to the
feature vectors F = { fn}N

n=1, fn ∈ RK×L×E , where E = 16 is
the dimension of feature vectors.

3) Multiple instance learning: The purpose of multiple
instance learning module is to 1) merge the features learned
in sub-instances to generate embeddings and 2) assign each
sub-instance a instance gain representing the weights of sub-
instances for discriminating samples with different emotion
labels. The instance gains for all the sub-instances construct
the embeddings for the sample. Here we use a weakly-
supervised multiple instance learning architecture which is
shown in Fig 2. Multiple instance learning can map the
feature vectors of sub-instances to the probability for that sub-
instance to specific task (in our case, discriminating between
emotion labels). Thus, it can promote the interpretability of
our algorithm by helping us understand with how much delay
(sub-instances with high probability) the signal segment can
better predict emotions.
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The feature vectors obtained from the previous module
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are first input into a feature level fusion module using uni-
dimension convolution. The convolution is conducted on the
dimension of E to merge the features from different signal
channels. After that, the merged features are activated by a
Rectified Linear Unit (ReLU) function. Another uni-dimension
convolution is implemented on the dimension of L to fuse
features for different sampling points inside each sub-instance.
At last, we activate the results from previous modules with a
softmax function. The purpose of the softmax activation is
to (a) normalize the instance gains in the range from 0 to 1
and (b) make the network easier to calculate the gradient for
back-propagation. After the multiple instance learning module,
the feature vector fi = { fnk}K

k=1, fnk ∈ RL×E is mapped into
instance gain gn = {gnk}K

k=1,gn ∈ R1. At last, the embedding
of one sample h = [g1,g2, . . . ,gK ], where K is the number of
sub-instances for one sample.

C. Siamese Learning

The purpose of using the siamese learning network is to
learn a distance metric which can discriminate samples with
different emotion labels. Specifically, for sample si and s j,
which are two signal segments for ti and t j, the siamese
learning network learn a distance metric D with the target of
D= 0 if they are with the same emotion label and D= 1 if they
are with the different emotion labels. To train the network, we
first construct two embedding networks with shared weights.
The two embeddings hi and h j generated from the network
are trained by contrastive Loss:

Lcontrast = (1−Y)
1
2
(Dw)

2 +Y
1
2

max(0,1−Dw)
2 (1)

where Y equals 0 or 1 for si and s j have the same or different
emotion labels respectively. Dw is the euclidean distance for hi
and h j. We also tested the cosine distance metric which is also
widely used for other siamese networks. However, our network
cannot converge using cosine metric. The contractive loss
encourages the network to learn embeddings to place samples
with the same labels close to each other while distancing the
samples with different emotion labels in the embedding space.
The siamese learning network is trained with the RMSprop
[57] optimizer because it can automatically adjust the learning
rate for faster convergence.

D. Distance Fusion

In the prediction stage, when a new sample st at time
t comes, we can obtain the pairwise distance metric D =
{Dn}N

n=1 by calculating euclidean distance between st and all
training samples {sn}N

n=1 using their embeddings. The distance
metric D can also be used to represent the probability of st ∈ lm
if the emotion label of snm is available:

P(st ∈ lm|snm ∈ lm) = 1−D (2)

where P(st ∈ lm|snm ∈ lm) represents the probability that
st corresponds to the emotion label lm under the condition
of snm ∈ lm. Previous works [22], [29], [31] on few-shot
learning simply average D with the same emotion labels and
predict st as the emotion label with the closet distance (or

greatest possibility). However, the hypothesis of averaging the
distances is that the labels for all training samples are correct:

P(st ∈ lm) =
M

∑
m=1

P(st ∈ lm|snm ∈ lm) ·P(snm ∈ lm) (3)

From equation 3 we can conclude that if all P(snm ∈ lm) = 1,
1−P(st ∈ lm) equals to the average of D. However, the fine-
grained self-reports, which are used as the labels for training,
can be mismatched with the physiological signals. Thus,
some samples in the training set can be labeled incorrectly.
This problem is not that severe when we use large amounts
of samples for training. However, when we only use few
annotated samples, one or multiple mislabeled samples can
significantly lower the model accuracy.

To solve this problem, we propose the Distance Fusion
module based on Bayesian Fusion to estimate P(smn ∈ lm).
Suppose there are N training samples which are annotated as
M emotion labels, N = {Nm}M

m=1 are the numbers of training
samples with M emotion labels, respectively. Nm is the number
of training samples labeled as lm. smn represents training
sample n annotated as emotion label lm. The probability of
smn ∈ lm can be estimated by:

P(smn ∈ lm) = 1− 1
2 [

1
Nm

∑
Nm
k=1 Dmk− 1

M−1 ∑
M,i,m
i=1 ( 1

Ni
∑

Ni
j=1 Di j)]

(4)
where Di j represent the distance between training sample si

and s j. The first and second Σ terms of equation 4 represent
the probability of smn similar to the training samples with the
same and different emotion labels of smn respectively. If smn is
similar to the samples with the same label and dissimilar with
the samples with different labels, the probability of smn ∈ lm
is high.

After we obtain all P(smn ∈ lm) for Nm samples labeled as
lm, we can calculate P(st ∈ lm) by equation 3. At last, we
predict st corresponds to the emotion label with the highest
probability:

lt = argmax
m

(P(st ∈ lm)) (5)

where lt is the predicted emotion label for the st .

IV. DATASETS

We test EmoDSN on three datasets: CASE [16], MERCA
[8] and CEAP-360VR [28] which are collected in three envi-
ronments: desktop, mobile and VR, respectively. The problem
EmoDSN focuses on is recognizing valence and arousal (V-
A) in fine level of granularity. Thus, we choose datasets
with fine-grained V-A self-reports as ground truth labels for
validating the performance of EmoDSN. We evaluate EmoDSN
on datasets collected in three different environments to test
whether it can be generalized to different scenarios. We also
test EmoDSN by signals collected using golden standard
(CASE) and wearable (MERCA and CEAP-360VR) devices
to test whether EmoDSN can generalize to different types of
physiological sensors.
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V. EXPERIMENTS AND RESULTS

A. Implementation details

To implement a fair evaluation among the three datasets, we
process the physiological signals to be as similar as possible
before inputting them to EmoDSN. Since the three datasets
have different sampling rates, we interpolate the signals in
MERCA and CEAP-360VR to 50Hz using linear interpretation
[58]. We choose linear interpolation because it is the simplest
interpolation method which will not change the distribution
of the signals. For the CASE dataset, the signals are down-
sampled to 50Hz by decimation down-sampling [59]. The HRs
signals of CASE are extracted from ECG signals using heartpy
library [60]. We use the mean V-A value of 2-second [1] as
the labels for training and testing the algorithm. The window
length L and stride k for the sub-instance proposal are 2s and
0.5s respectively according to previous research [1], [39]. For
each timestamp t, we move the sliding window 12 times to
cover the annotation delay for maximum 10s. The amount of
time of annotation delay is discussed in section VI-A.

We evaluate EmoDSN by two tasks: the one-dimensional
two-class (1D-2C) classification [61] and the two-dimensional
5-class (2D-5C) classification [62], which are widely used as
the tasks for evaluating emotion recognition algorithms using
physiological signals. We follow the standard labeling schemes
from previous works [61], [62] to map continuous values of V-
A to discretized emotion categories. The graphical illustration
of this operation is listed in Fig 3.
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Fig. 3. Graphical illustration of discretized emotion categories

For the training procedure, we train user-specific models
for all the users in three datasets. We follow the standard
procedure of testing few-shot learning algorithms with contin-
uous signals [43]. We randomly sample N (i.e., shot) sampling
points in each emotion category as training samples from one
user and use the rest of the samples for testing. The results
reported in this section are the average results for all users. We
also tried to train user-independent models which use only few
annotated samples from one user and test the model on other
users. However, due to the high inter-subject variability that
affects the physiological signals, building user-independent
emotion recognition model is still challenging even using large
amounts of annotated data [39], [63]. In this study, we use
only few annotated data for training. User-independent models
did not achieve satisfactory performance (accuracy not above
chance level) for all three datasets and thus the result was not
reported in this study.

B. Classification results

We use accuracy (acc) and macro-F1 score (m-f1) to evalu-
ate the performance of our algorithm. The accuracy represents
the percentage of correct predictions. The macro-F1 score is
the mean of precision and recall for each label. We use macro-
F1 score instead of weighted and binary F1-score to take
into account label imbalance. Compared with accuracy, the
macro-F1 score can provide more objective evaluation results
by taking into account how the data are distributed.

TABLE I
THE PERFORMANCE OF EmoDSN TRAINED WITH 5-SHOT

5-shot CASE MERCA CEAP-360VR
acc m-f1 acc m-f1 acc m-f1

1D-2C-valence 77.30% 0.722 78.95% 0.765 71.86% 0.695
1D-2C-arousal 77.72% 0.709 77.18% 0.764 74.95% 0.729

2D-5C 58.77% 0.482 56.08% 0.508 56.93% 0.512

The performance of EmoDSN trained with 5-shot is shown
in Table I. EmoDSN can obtain up to 70% for 1D-2C and
56% for 2D-5C, which are much higher than chance level
(shown in Fig. 6). The results are obtained by training with
only 5-shot (10 seconds of sampling points for each emotion
category). That demonstrates that EmoDSN can converge and
obtain accurate fine-grained emotion recognition with only few
annotated samples.

C. Results for different emotion categories

The confusion matrices for 2D-5C are shown in Fig 4. We
only show the confusion matrices for 2D-5C because it con-
tains classification results for more emotion categories. From
the confusion matrices we can see that EmoDSN performs
well on discriminating the neutral and non-neutral samples.
Almost all neutral samples are predicted as neutral for the
three datasets. EmoDSN also performs well on discriminating
samples with high valence. An averaged acc of 78.6% is
obtained by EmoDSN when discriminating high/low arousal
under the condition of high valence. However, the performance
on discriminating samples with low valence is not as good
as high valence. More than 20% of the LVHA samples are
categorized as LVLA on average of the three datasets.

The reason is the class imbalance for different emotion
categories. As shown in Fig 6 (a), for 2D-5C, the neutral
class has more than 30% of samples for all three datasets.
The most imbalanced dataset is CASE, which contains more
than 50% of samples with neutral labels. We also find the
LVLA and LVHA classes have comparatively fewer samples
(16.48%, 31.04% and 29.37% for CASE, MERCA and CEAP-
360VR respectively). That is why discriminating different
levels of arousal is more challenging under the condition of
low valence. However, for 1D-2C, the high/low V-A classes
are balanced. We do not find any classes with less than 40% of
all samples. Thus, the performance for 1D-2C is comparatively
balanced: the m-F1 score is 3.6% lower than the acc on
average of the three datasets. For 2D-5C, the m-F1 is 7.4%
lower than the acc on average of the three datasets.
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Fig. 4. The confusion matrices for 2D-5C trained by 5-shot

Fig. 5. The training losses (5-shot, 2D-5C) of EmoDSN on CASE (left),
MERCA (middle) and CEAP-360VR (right), each curve represents the train-
ing loss for the user-specific model trained on one user

Fig. 6. Percentage of samples in different emotion classes

However, even taking the class imbalance into consid-
eration, the acc obtained by EmoDSN is still higher than
the chance level. For CASE, MERCA and CEAP-360VR
respectively, the accuracies are 19.07%, 24.67% and 17.75%
higher than the percentage of samples in the class with the
most samples (i.e., the chance level). The results show that
although EmoDSN provides relatively imbalanced precision
and recall for different V-A categories, it does not overfit
into one specific V-A category and can still provide accurate
predictions.

D. Results for different datasets and subjects

For the comparison between different datasets, our method
performs best on CASE dataset (up to 76% and 58% acc
for 1D-2C and 2D-5C respectively). The acc of 1D-2C on
MERCA is similar to CASE but the 2D-5C acc on MERCA
is 2.69% lower. Both the accuracies for 1D-2C and 2D-5C
on CEAP-360VR are lower than the accuracies on CASE for
3.35% on average. We speculate that the different accuracies
of EmoDSN on three datasets is a result of the different
experimental environments. The data collection experiment of
CASE was conducted in an indoor laboratory environment,
which contains less interference and noise (e.g., environment

noise, user movement, sensor detachment). Thus, the signals
from CASE contain less noise and artifacts caused by both
the users themselves and the outside environment. The results
indicate that the mobile (MERCA) and VR environments
(CEAP-360VR) are more challenging for fine-grained emo-
tion recognition compared with a laboratory-based desktop
(CASE) environment. However, the maximum difference in
acc between the three datasets is less than 7%, which shows
that our algorithm does not overfit on one specific dataset. The
test results on different datasets show good generalizability of
EmoDSN among different environments (desktop, mobile and
VR).

For the comparison between different subjects, Fig 7 shows
the acc for each individual subject of three datasets. From Fig
7 we can find variability of acc between different individuals:
the average SD for 1D-2C valence, arousal and 2D-5C are
10.43%, 11.31% and 6.11% respectively. Our model achieves
up to the chance level (the percentage of samples in the class
with the most samples) accuracies for 86.05%, 85.57% and
82.37% of the subjects for 1D-2C valence, 1D-2C arousal and
2D-5C respectively. For the subjects which our algorithm does
not achieve above the chance level accuracies, we find the
annotations of their data are highly imbalanced (i.e., subject
annotates a high percentage of neutral emotion). For example,
subject 6 in the CEAP-360VR dataset annotated 72.35% of
his or her emotion as neutral when watching videos. The
average percentage of neutral annotations for these subjects is
28.41% higher than the subjects whose accuracies are above
the chance level. Although recognition accuracies from some
of the subjects are low because of class imbalance, our model
still achieves above the chance level acc for more than 80% of
the subjects. The balanced performance on different subjects
shows good generalizability of EmoDSN among different
subjects.

E. Visualization of the embeddings

To visualize the joint sample distribution of the train-
ing/testing set, we use T-distributed stochastic neighbor em-
bedding (t-SNE) to reduce the dimension of the embeddings
to 2D. It is widely used by previous works [64], [65] of few-
shot learning approaches for visualizing the training/testing
set. From Fig. 8 we can see that the embedding trained
by EmoDSN constructs the compact clusters of the training
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Fig. 7. The recognition acc for individual subject of CASE, MERCA and CEAP-360VR

Fig. 8. The visualization of embedded features using t-SNE. Red and blue
points denote the train and test samples, respectively. Best viewed in color.

features close to the testing features (average purity score
= 0.685, 0.657 and 0.614 for CASE, MERCA and CEAP-
360VR respectively). The close temporal position between
training/testing samples indicates that the learned embeddings
can represent the joint distributions between few-shot training
samples and the remaining test samples for emotion classi-
fication. Previous works [64], [66] show that the closer the
training/testing sets are, the easier the classification network
can complete the learning task. Our visualization results
demonstrate the effectiveness of the embedding network we
designed for the Deep Siamese Network.

F. Comparison with baseline methods

1) Implementation details: To compare the performance of
EmoDSN with state-of-the-art emotion recognition methods,
we choose two kinds of baselines: classic FSL networks (i.e.,
Matching network (MN) [29], Prototype network (PN) [30],
Deep Siamese Network (DSN) [47], Relation Network(RN)
[31] and Model Agnostic Meta Learning (MAML) [43])
and networks designed for physiological-signal-based emotion
recognition (HetEmotionNet (HetNet) [67] and SFENet [68]).
We choose the five FLS baselines because they are widely
used by previous works for emotion recognition using similar
data modalities (i.e., uni-dimensional data modalities such as
speech [48] and physiological signals [21]). To implement a
fair comparison, we fine-tune the structure of these methods
to make them have the same embedding network we designed
in section III-B. Thus, the difference between each method is
only the learning structure instead of the embedding network
for feature extraction. We also use the same optimizer and
learning rate (lr = 0.001) as EmoDSN to train all four few-
shot learning algorithms. For HetNet, we construct the spatial-
temporal and spatial-spectral graph (by DE features) and train
them using the same graph recurrent neural network. Since
the folding approach used by SFENet is based on the spatial
distribution of EEG electrodes, we cannot use it for other
physiological signals. Thus, we only use the 3D-CNN and
ensemble learning designed in SFENet for comparison. We

train the above algorithms with one, five and ten shot to
compare their performance trained by different amounts of
annotated samples. To test the stability of each algorithm, we
run all the experiments 5 times [69], [70] and report the mean
and SD of the accuracies.

2) Accuracy comparison: Table II shows the results of
the comparison. We observe that the gradient cannot descent
(losses remain constant) when training the MN, PN and RN
with 1-shot and 5-shot for 2D-5C. As shown in Fig 5, this
problem does not occur when we use DSN: the losses descend
rapidly after a few epochs (<10) for all personalized models
in three datasets. The performance of MAML is better (acc is
8.89% and 6.94% higher for 1D-2C and 2D-5C respectively)
than other FSL methods. However, the acc increase for MAML
is not as significant as other FSL methods: when the number
of training samples increases from 1-shot to 5-shot, the acc
increase 3.04% and 6.94% on average for 1D-2C and 2D-5C
respectively. The other FSL methods however, increases 9.22%
and 10.76% for 1D-2C and 2D-5C respectively.

For the two fully supervised learning methods, we find a
similar problem with MN, PN, and RN that for 2D-5C, the
gradient cannot descent (losses remain constant) for 1-shot and
5-shot. Their average acc for 10-shot is also 5.89% lower than
DSN. We also find the problem of overfitting for them when
trained with 10-shot: the training acc increases rapidly over
90% after 5 epochs but the testing acc does not increase. The
results demonstrate that the fully-supervised learning methods
cannot achieve good performance when only a limited amount
of data are used for training.

In general, the performance of EmoDSN is better than
both the state-of-the-art FSL algorithms and fully-supervised
algorithms. To compare the performance difference between
EmoDSN and baseline methods, we follow the previous work
of Kumar et al. [71] which use Z-test and Chi-square test to
compare the classification accuracies. For both the Z-test and
Chi-square test, we found significant differences (all p<0.01)
between EmoDSN and MN (Z = 14.21,χ2 = 5.48), PN (Z =
14.14,χ2 = 6.59), RN (Z = 21.04,χ2 = 8.98), DSN (Z =
14.49,χ2 = 2.99), MAML (Z = 12.36,χ2 = 2.17), HetNet
(Z = 11.69,χ2 = 3.06) and SFENet (Z = 23.74,χ2 = 5.86).
The statistical analysis shows a significant difference between
the performance of EmoDSN and other baseline methods.

3) Stability comparison: The stability of 5 FSL methods
(i.e., MN, RN, PN, DSN, MAML) is lower than the two
supervised learning algorithms (i.e., HetNet and SFENet):
the SD for the 5 experiments is 7.81% higher. When the
number of training samples increases to 10-shot, the SD
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TABLE II
COMPARISON BETWEEN FEW-SHOT LEARNING METHODS

Dataset Methods 1-shot accuracy 5-shot accuracy 10-shot accuracy
1D-2C
valence

1D-2C
arousal 2D-5C 1D-2C

valence
1D-2C
arousal 2D-5C 1D-2C

valence
1D-2C
arousal 2D-5C

CASE

MN [29] .364(.123) .381(.132) .202(.131) .446(.145) .501(.125) .303(.096) .481(.199) .554(.174) .332(.166)
PN [30] .311(.129) .317(.131) .194(.126) .467(.124) .488(.140) .317(.095) .453(.184) .568(.191) .336(.131)
RN [31] .335(.131) .355(.152) .183(.132) .381(.146) .392(.127) .224(.105) .371(.182) .366(.184) .281(.150)

DSN [47] .409(.156) .338(.132) .368(.154) .510(.101) .478(.093) .414(.097) .563(.163) .587(.176) .482(.182)
MAML [43] .489(.142) .476(.150) .263(.151) .495(.128) .507(.166) .361(.139) .519(.140) .526(.135) .403(.146)
HetNet [67] .353(.066) .374(.076) .233(.088) .465(.073) .533(.058) .364(.070) .502(.054) .532(.050) .425(.077)
SFENet [68] .391(.086) .396(.079) .268(.053) .411(.083) .422(.078) .275(.057) .434(.030) .426(.025) .350(.074)

EmoDSN .668(.062) .654(.054) .453(.081) .778(.021) .769(.044) .583(.045) .782(.080) .778(.096) .586(.110)

MERCA

MN [29] .371(.140) .362(.133) .192(.156) .457(.136) .524(.157) .366(.123) .455(.197) .511(.178) .356(.172)
PN [30] .283(.125) .303(.142) .211(.123) .416(.145) .511(.138) .365(.109) .435(.188) .546(.178) .385(.132)
RN [31] .365(.144) .381(.138) .185(.150) .402(.130) .451(.132) .264(.120) .369(.160) .384(.192) .237(.175)

DSN [47] .370(.127) .405(.134) .383(.124) .429(.106) .562(.090) .446(.104) .482(.184) .602(.158) .466(.173)
MAML [43] .517(.180) .497(.167) .393(.168) .571(.146) .582(.146) .404(.153) .568(.132) .587(.098) .421(.139)
HetNet [67] .400(.073) .421(.054) .279(.085) .542(.082) .536(.057) .426(.086) .557(.033) .580(.047) .435(.088)
SFENet [68] .404(.084) .410(.080) .247(.074) .393(.083) .397(.060) .312(.053) .448(.026) .443(.054) .337(.103)

EmoDSN .683(.053) .633(.064) .432(.090) .799(.033) .763(.033) .558(.033) .802(.065) .766(.075) .553(.091)

CEAP
360VR

MN [29] .394(.138) .423(.154) .176(.168) .411(.123) .437(.123) .357(.101) .396(.196) .502(.199) .326(.178)
PN [30] .292(.125) .336(.133) .186(.156) .407(.147) .450(.155) .345(.112) .402(.185) .521(.159) .312(.136)
RN [31] .385(.141) .386(.149) .185(.150) .396(.135) .403(.136) .271(.109) .413(.160) .425(.163) .276(.126)

DSN [47] .401(.154) .381(.135) .358(.138) .434(.094) .507(.097) .433(.082) .473(.157) .554(.194) .446(.188)
MAML [43] .481(.144) .486(.139) .326(.138) .496(.174) .499(.124) .424(.184) .514(.130) .521(.128) .421(.107)
HetNet [67] .386(.058) .360(.080) .314(.056) .538(.077) .526(.053) .436(.055) .546(.049) .558(.057) .467(.081)
SFENet [68] .406(.057) .401(.087) .261(.064) .411(.084) .425(.056) .315(.072) .443(.027) .435(.030) .333(.106)

EmoDSN .598(.062) .625(.084) .487(.097) .720(.044) .745(.035) .561(.029) .725(.066) .742(.077) .554(.073)

difference between FSL and fully-supervised learning methods
also increases accordingly (on average 10.75% for 10-shot).
FSL algorithms learn the difference (MN, RN, PN, DSN)
or train a meta learner (MAML) between training samples
instead of learning the exact mapping between samples and
labels. Thus, their performance depends on the quality of
training samples, which leads to instability if we consider
all training samples to be correctly labeled [72]. The fully-
supervised learning methods however, optimize the classifier
among all training samples. Thus, they converge on a worse
(i.e., low acc) but comparatively stable model if only few
samples are used for training. The results are in line with
our conclusion in ablation study that we cannot get stable and
accurate recognition results if we assume all P(snm ∈ lm) are
to be 1.

G. Ablation study

1) Implementation details: We conduct an ablation study
to verify the effectiveness of each component in EmoDSN. We
begin with only using the Vanilla Siamese (VS) structure to
train the network. The VS structure directly uses the raw signal
segments without passing them through the embedding net-
work. Then we test the performance of combining the VS with
the Embedding Network (EN) described in section III-B. For
the two above experiments, instead of using Distance Fusion
(DF), we follow the traditional strategy of few-shot learning

algorithms: average the distances with the same emotion labels
and predict the samples as the emotion label with the closest
distance. Finally, we replace the simple averaging with the DF
described in section III-D for the complete EmoDSN. To test
the stability of EmoDSN, we also repeat the experiments 5
times [69], [70] and report the mean and SD of acc.

TABLE III
ABLATION STUDY (ACC (SD)) FOR VANILLA SIAMESE (VS), EMBEDDING

NETWORK (EN) AND DISTANCE FUSION (DF)

Dataset VS VS+EN EmoDSN
VS+EN+DF

1D-2C
valence

CASE .412(.119) .480(.101) .773(.021)
MERCA .337(.134) .558(.106) .789(.033)

CEAP-360VR .413(.145) .510(.093) .718(.043)

1D-2C
arousal

CASE .354(.135) .501(.092) .777(.044)
MERCA .365(.131) .437(.089) .772(.033)

CEAP-360VR .320(.147) .440(.097) .749(.035)

2D-5C
CASE .314(.162) .406(.097) .587(.045)

MERCA .293(.159) .443(.104) .561(.034)
CEAP-360VR .322(.162) .423(.080) .569(.029)

2) Accuracy comparison: From the results (shown in Table
III) we can see both EN and DF contribute to the classification
tasks. The EN benefits the classification tasks by extracting
deep features and taking reaction delay into consideration.
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Thus, the accuracies increase 11.85% on average after com-
bining EN to VS. We also observe a significant increase of
accuracies (more than 20% for 1D-2C and 10% for 2D-5C)
after adding the distance fusion module. This finding demon-
strates that simply averaging the distances from different shot
is not suitable for fine-grained emotion recognition using
physiological signals. It necessitates considering the probabil-
ity that some mislabelled training samples can significantly
lower the model accuracy. In conclusion, the observations
above demonstrate the effectiveness of the components in the
proposed algorithm.

3) Stability comparison: For the comparison of SD, we
find both VS and VS-EN have relatively unstable performance:
the average SD is 14.39% and 9.58% for VS and VS-ED
respectively. Adding DF however, can improve the stability
of the network by decreasing the SD to 1.6%. When ran-
domly selecting only few training samples, some samples with
low-confidence annotation will affect the performance of the
network. If all P(snm ∈ lm) are assumed to be 1, the network
is unstable because the performance is related to the quality
of labels selected for training. However, DF modules can
decrease the instability by assigning less confident samples
lower weights for classification. The results demonstrate the
necessity and effectiveness of adding DF into EmoDSN.

H. Effectiveness of DF module

To further clarify the effectiveness of the distance fusion
(DF) module for the wrong labels, we use it to identify
potentially wrong labels and correct them when classifying
emotions. Specifically, we first calculate the P(snm ∈ lm) for all
training samples using equation 4. P(snm ∈ lm) represents the
probability of training sample snm corresponds to the emotion
label lm. If the probability is lower than 0.5, we assume the
sample is mislabeled and correct it. Here we only run the
experiments for 1D-2C because we cannot estimate the correct
label of snm for multi-class classification if P(snm ∈ lm) is low.
For multi-class classification, if we know P(snm ∈ lm) <0.5: we
do not know which i can satisfy P(snm ∈ li,i,m). However, for
binary classification, since P(snm ∈ lm)+P(snm ∈ li,i,m) = 1, if
P(snm ∈ lm)<0.5 we can easily know P(snm ∈ li,i,m)>0.5. Thus,
the mislabeled samples are corrected as the label opposite to
its original annotation. Then we average the distance (D) with
the same emotion labels after the label correction and predict
the testing sample as the emotion label with the greatest possi-
bility. Then we compare the recognition accuracies among the
network a) without the Correction of Labels (no-CL), b) with
the Correction of Labels (CL) and c) with the DF module. To
ensure the stability of the experiment, we run the experiment
5 times [69], [70] and report the average acc and the SD of 5
experiments.

As shown in Fig 9, after the correction of labels, the
accuracies increase 19.12% on average of three datasets. Since
both no-CL and CL use the simple averaging distance learned
by the DSN, the detection of mislabeled samples can promote
the classification performance of EmoDSN. However, we also
find that using DF can result in an average acc increase of
8.43% compared with using CL. In addition, the performance

Fig. 9. Recognition accuracies among the network a) without the Correction
of Labels (no-CL), b) with the Correction of Labels (CL) and c) with the DF
module.

of DF is more stable than CL: the average SD of DF is
5.26% lower than CL. The difference between the network
with DF and CL is that DF uses a soft weighted average
of D to estimate the emotion label. CL uses an arithmetic
average of D after correcting the labels of the samples whose
P(snm ∈ lm) < 0.5. Thus, for few-shot learning based fine-
grained emotion recognition, assigning low weights for an
inexactly labeled sample can result in better and more stable
performance compared with simply correcting it according to
the intra data distribution of training samples (i.e., whether the
distribution of this sample is coherent with others).

I. Running time and efficiency

The average training time for different methods are shown
in TABLE IV. Our model is implemented using Keras and
Tensorflow. All our experiments are performed on a desktop
with NVIDIA RTX 2080Ti GPU with 16 GB RAM. The
one-to-many learning structure is used by MN, PN, RN and
MAML. Thus, the number of training samples for them is
n(n− 1) · k2, where n and k are the numbers of shots and
classes of the learning task respectively. Our method uses
the pair-by-pair learning structure. The number of training
samples is Σ

n·k−1
i=1 (n · k− i). For the fully-supervised learning

methods, training samples are directly input into the network
without combining them into different pairs. Thus, the number
of training samples for them is n · k.

TABLE IV
AVERAGE TRAINING TIME FOR DIFFERENT METHODS

5-shot-2C 5-shot-5C 10-shot-2C 10-shot-5C

MN [29] 125.23 (s) 652.65 (s) 432.25 (s) 3025.65 (s)
PN [30] 118.16 (s) 752.45 (s) 354.72 (s) 2546.36 (s)
RN [31] 156.24 (s) 819.65 (s) 495.25 (s) 3432.24 (s)

MAML [43] 245.24 (s) 792.68 (s) 419.88 (s) 2653.24 (s)
HetNet [67] 126.54 (s) 252.32 (s) 198.27 (s) 1025.56 (s)
SFENet [68] 87.26 (s) 256.78 (s) 175.36 (s) 986.71 (s)

EmoDSN 76.53 (s) 419.25 (s) 269.54 (s) 1543.25 (s)

Although the fully-supervised methods have a more com-
plex structure, the number of samples for training is less than
FSL methods. Thus, their training time is shorter than FSL
methods. However, they do not achieve up-to-chance level
acc because their learning structures are not designed for
converging on a small amount of training samples. For the
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FSL methods, the pair-by-pair learning structure used by our
method results in fewer training samples compared with other
FSL methods using one-to-many structures. Thus, our method
requires less training time: EmoDSN requires only 54.83% of
the average training time of other FSL methods. The result
demonstrates the good efficiency of EmoDSN compared with
baselines using both fully-supervised and FSL methods.

Although the result of 10-shot is better, it requires much
more training time compared with 5-shot. As shown in TABLE
IV, training the model using 10-shot takes almost 4 times as
long as training the model using 5-shot. The testing acc and m-
F1 score however, only increases 0.15% and 0.20% on average
for the three datasets. Increasing the training samples from 1-
shot to 5-shot however, result in the increase of acc and m-F1
for 11.58% and 9.32% respectively. Thus, using 5-shot makes
a trade-off between training time and model accuracies.

VI. DISCUSSION

A. Reaction delay of continuous annotation

According to the research of Metallinou et al. [73], there
are time delays (e.g., due to gender, age, distraction levels)
between the occurrence of an emotional event and its annota-
tion considering that continuous annotations are performed in
real-time. If we use misaligned annotation as labels to train the
network, it will overfit or not converge. Most of the previous
works [23]–[25] use visual features from video stimuli to
align the annotation. In these approaches (also known as
explicit compensation [74]), the delay compensation and the
emotion prediction are performed separately. However, these
approaches assume that the reaction delay is fixed for different
users watching the same video stimuli. This assumption is
untenable as the reaction time is both stimulus dependent and
individual dependent [74].

The last layer of EmoDSN can identify which sub-instances
(signal segments with different time of delay) can better
predict the fine-grained emotion labels. Once the network is
trained, we can observe the instance gains in the last layer to
find out with how much delay the network can perform the
best. Our approach belongs to the implicit compensation [74],
which compensates for delays while modeling the relationship
between input signals and emotion labels. The uniqueness
of our approach is that we do not have to manually adjust
the parameters (e.g., the width of analysis window for LSTM
[26] or the receptive field for CNN [75]) in the network for
compensating different delays for different individuals.

To obtain the range of reaction delay, we first run the 1D-2C
task and get the delays of the sub-instances with maximum
instance gain (i.e., have the highest probability to predict
emotion labels). We follow the procedure of previous works
[23], [25] that estimate the delay of each dimension (valence
and arousal) separately. Fig 10 shows the box plot of reaction
delays estimate by EmoDSN for three datasets.

The mean and standard deviation of delays are: CASE =
2.59(1.47), MERCA = 2.50(1.43), CEAP-360VR = 2.89(1.03)
and CASE = 4.05(1.45), MERCA = 4.21(1.42), CEAP-360VR
= 4.38(1.27) for valence and arousal respectively. The mean
delay for arousal is higher than the delay for valence for

Fig. 10. The reaction delays for valence and arousal respectively

Fig. 11. The relationship between the steps of sliding windows and recogni-
tion acc

all the three datasets. A Shapiro-Wilk test shows that the
delays for both valence and arousal in three datasets are all
normally distributed (all p > 0.05 for three datasets). For the
comparison between different scenarios (desktop, mobile and
VR for CASE, MERCA and CEAP-360VR respectively), we
perform a ANOVA. Here we do not find a significant effect of
scenarios on both valence (F(2,80) = 0.795, p = 0.455,η2

p =

0.019 and arousal (F(2,80) = 0.416, p = 0.661,η2
p = 0.010.

However, through Welch’s t tests, we do find there is signifi-
cant difference between the delay of valence and arousal for
CASE (t(58)=2.869, p < 0.01, Cohen’s d = 0.944), MERCA
(t(40)=3.804, p < 0.01, Cohen’s d = 1.372) and CEAP-360VR
(t(62)=5.045, p < 0.01, Cohen’s d = 1.340) respectively.

These results show that users need more time to react
for annotating arousal than valence. This finding is coherent
with most of the previous works using explicit [23]–[25]
compensation methods. The averaged delays (2.66s and 4.21s
for V-A) obtained by our method are also similar to the results
obtained by explicit methods (e.g., 2s and 4s from Huang et
al. [23], 3.08s and 3.95s from Mariooryad et al. [24] for V-
A respectively). Thus, our method for compensating reaction
delay can provide similar results without using visual and
audio features from stimuli. The average annotation delays
in different datasets collected in different scenarios are com-
parable. The reason for this finding is that the annotations
of all three datasets were collected using the joystick-based
annotation interface.

We also conduct an experiment to find out whether sliding
windows with long delays can introduce redundant information
from other temporal moments for emotion recognition. Fig 11
shows the relationship between the steps of sliding windows
and recognition acc for 1D-2C arousal and valence respec-
tively. The recognition acc keeps increasing for both valence
and arousal recognition when the steps of delay increase from
0s to 7s. The low acc caused by the short delay time of sliding
windows show that if the sliding windows cannot cover enough
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delay, the embedding network will fail to identify the sub-
instances which represent the emotion label of that moment.
The recognition acc for V-A becomes stable after increasing
the delay of sliding windows for 7s and 10s respectively. Thus,
the noise of adding steps of sliding windows can be filtered
by the MIL module: the recognition acc do not decrease
when we add the steps of the sliding window. Instead of
fully-supervised learning, all the sub-instances are weakly
supervised by the emotion labels. The weights learned by
MIL layers represent the probability of one sub-instance for
discriminating samples between different emotion categories.
Thus, the redundant information from other temporal moments
can be automatically filtered (i.e., assign low weights). The
results are also in line with the finding that the annotation
delay of arousal is higher than the delay of valence: we need
to add more steps (i.e., delay time) of sliding windows to cover
the corresponding sub-instances for arousal recognition.

B. Do the temporal moments of training samples affect the
performance?

In section V, we randomly sample N training samples
from each emotion category to train EmoDSN. Although it
is the standard evaluation procedure to test few-shot learning
algorithms, it is difficult to get randomly balanced number of
samples with different emotion labels. When applying the al-
gorithm for evaluating the user experience of watching videos,
the possible methods are 1) randomly stop the video and ask
users to annotate their emotions or 2) ask users to annotate at
some fixed temporal moments to obtain the emotion labels
for training. Since we use only few annotated samples to
train the network, we want to find out samples from which
temporal moments can better represent the distribution for the
whole video watching and result in better recognition results.
We also want to explore the amount of samples EmoDSN
needs to obtain accurate recognition when selecting training
samples in different temporal moments of video watching.
Answering these two questions can help researchers maximize
the performance of EmoDSN and minimize the amount of
training samples by asking users to annotate at the most
suitable temporal moments in video watching.

To achieve this, we select training samples from both fixed
and random temporal moments of video watching and compare
the recognition acc (1D-2C) when training with different
amounts of samples. Specifically, we choose the beginning,
ending and the changing points as fixed temporal moments
and compare the result with the random moments:
• Beginning: We choose the first K samples from a video

watching as training samples and test on the rest.
• Ending: We choose the last K samples from a video

watching as training samples and test on the rest.
• Changing points: According to the research of Sharma

et al. [32], the changing points in continuous annotation
can signify emotionally salient moments. Thus, we want
to find out whether these samples can better represent the
distribution for the whole video watching. We select samples
from the changing points of annotation (obtained using
the Changing Points Analysis (CPA) [32]) as the training
samples and test on the remaining samples.

• Random: We randomly choose K samples from one video
watching as the training samples and test on the remaining
samples. Unlike balanced random selection in section V,
it does not ensure each emotion category has a balanced
number of training samples.
The results of how the acc of EmoDSN changes with

different amounts of samples from different temporal moments
of video watching is shown in Fig 12. From Fig 12 (d) we
observe that random selection results in great fluctuation of
the recognition acc when more samples are used for training.
Selecting from fixed temporal moments however (Fig 12 (a)-
(c)), results in relatively stable performance when inputting
more training samples. Thus, selecting training samples from
fixed temporal moments can result in more stable performance
when we only use few annotated samples for training.

We also observe that if we choose training samples from
the beginning of video watching, the algorithm needs more
training samples to converge. It needs more than 10 training
samples (20 seconds) to increase the recognition acc above
50%. Using the ending moments however, requires less than
8 training samples (16 seconds) to achieve 50% acc. The
best temporal moments to select the training samples are
the changing points: the acc exceeds 70% by only using 4
samples (8 seconds) for training. Thus, the samples at the
changing points and the ending moments can better represent
the distribution of the whole video watching and result in
better acc with fewer samples.

The results we obtain are coherent with the peak-end theory
[76] that the most salient (peak) or recent (end) moments can
better represent the emotions of users while watching videos.
We also observe that the distributions of samples with specific
emotion labels are different across the temporal moments.
Fig 13 shows the percentage of samples with high/low V-
A labels in different temporal moments of video watching.
Compared with the ending moments of video watching, most
of the samples (more than 70% for all three datasets) from
the beginning moments are labeled as high V-A. If we choose
these samples as training data, the imbalanced training set can
result in mis-convergence of the learning network (e.g., in Fig
12 (a) when the amount of samples < 12s, acc < 30%). It
also explains why fewer training samples are required from
the end of video watching for good results: the samples are
more balanced at the end of video watching.

In conclusion, the temporal moments of training samples
do have influence on the performance of EmoDSN. The take-
way message from this experiment is that samples from the
changing points of emotion and the ending moments of video
watching are better training samples when only few samples
are available for building up an emotion recognition system.

VII. LIMITATIONS AND FUTURE WORK

Given the challenges of predicting valence and arousal la-
bels at a fine level of granularity using only few annotated sam-
ples, there are natural limitations to our work. First, EmoDSN
only works well for the personalized or subject-dependent
emotion recognition model. Since the patterns of physiological
signals are highly variable between subjects [39], [63], using
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Fig. 12. The 1D-2C recognition acc when training EmoDSN with samples from the a) beginning, b) ending, c) changing points and d) random position of
video watching. The granularity of samples is 2 seconds. The amount of samples are shown in the unite of seconds (e.g., 4 seconds = 2 samples)

Fig. 13. Percentage of samples with high/low V-A labels in different temporal
moments of video watching for CASE, MERCA and CEAP-360VR

few annotated samples to model it is challenging and relies on
the careful selection of training samples. In the future, we will
extend EmoDSN for subject-independent emotion recognition
model by finding out which training samples can represent the
inter-subject variability of physiological signals. In addition,
EmoDSN requires discretization of continuous labels for fine-
grained recognition since EmoDSN is designed specifically
for classification instead of regression. In the future, we will
extend the EmoDSN into few-shot regression [77] algorithm
and obtain continuous output for emotion recognition. It is also
essential for us to compare the performance of EmoDSN on
more datasets to further test its generalizability. However, the
number of datasets with continuously annotated physiological
signals is to date limited. It lacks benchmark results using
basic few-shot learning methods. Thus, it is difficult to make
comparisons with more few-shot learning methods.

VIII. CONCLUSION

Fine-grained emotion recognition requires training the al-
gorithm with large amounts of continuous emotion labels. In
this paper, we propose EmoDSN, a Deep Siamese Network

based few-shot learning algorithm to classify fine-grained
valence and arousal with only a small amount of annotated
signals. The embedding network of EmoDSN enables our
algorithm to compensate the reaction delay of annotation
while predicting the fine-grained valence and arousal. The
distance fusion module of EmoDSN minimizes the overfitting
problem caused by mislabeled training samples. The proposed
algorithm achieves reasonable performance (averaged accu-
racy of 76.04%, 76.62% and 57.62% for 1D-2C valence,
1D-2C arousal and 2D-5C respectively) by using only 5
shot as training data for subject-dependent testing on three
datasets collected in three different environments (i.e., desktop,
mobile, and HMD-based VR). Our algorithm also outperforms
other few-shot learning algorithms which are widely used
for emotion recognition. The ablation study shows that the
embedding network and distance fusion module, which are
specifically designed for physiological signals based fine-
grained emotion recognition, can significantly improve the
recognition accuracy. Our experiment on reaction delay of
annotation shows that 1) the reaction delay for arousal is
longer than the delay for valence and 2) the reaction delays
between different scenarios have no significant difference. We
also find that the changing points of emotion annotation and
the ending moments of video watching are better temporal
moments for selecting training samples: if we select train-
ing samples from these two temporal moments, EmoDSN
can provide better recognition results with fewer annotated
samples. Source code for EmoDSN is publicly available on
https://github.com/cwi-dis/EmoDSN.
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