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Abstract—Watching 360◦ videos using Virtual Reality (VR)
head-mounted displays (HMDs) provides interactive and im-
mersive experiences, where videos can evoke different emotions.
Existing emotion self-report techniques within VR however are
either retrospective or interrupt the immersive experience. To
address this, we introduce the Continuous Physiological and
Behavioral Emotion Annotation Dataset for 360◦ Videos (CEAP-
360VR). We conducted a controlled study (N=32) where par-
ticipants used a Vive Pro Eye HMD to watch eight validated
affective 360◦ video clips, and annotated their valence and
arousal (V-A) continuously. We collected (a) behavioral (head
and eye movements; pupillometry) signals (b) physiological (heart
rate, skin temperature, electrodermal activity) responses (c)
momentary emotion self-reports (d) within-VR discrete emotion
ratings (e) motion sickness, presence, and workload. We show the
consistency of continuous annotation trajectories and verify their
mean V-A annotations. We find high consistency between viewed
360◦ video regions across subjects, with higher consistency for eye
than head movements. We furthermore run baseline classification
experiments, where Random Forest classifiers with 2s segments
show good accuracies for subject-independent models: 66.80%
(V) and 64.26% (A) for binary classification; 49.92% (V) and
52.20% (A) for 3-class classification. Our open dataset allows fur-
ther experiments with continuous emotion self-reports collected
in 360◦ VR environments, which can enable automatic assessment
of immersive Quality of Experience (QoE) and momentary
affective states.

Index Terms—360◦ video, virtual reality, emotion, dataset,
HMD, physiological signals, head and eye movement, continuous
annotation

I. INTRODUCTION

W
ITH the rapid development of VR technologies and

increasing availability of commercial HMDs, 360◦

video has been flooding into our daily life and drawing great

attention [3], [4]. As a new multimedia type, 360◦ video

can provide virtual and immersive experiences by occupying

the entire vision of the viewer. While watching 360◦ videos,

viewers are allowed to freely rotate their head and focus on

objects and regions of interest, which enables more immersive

and interactive experiences [3], by contrast to desktop video.
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One key aspect is the capacity of VR to evoke a wide range

of emotions in users [5], [6]. Example research areas include

inducing emotional responses for educational purposes [7],

tourism experiences [8], or for developing emotion recognition

and adaptive systems [6] within immersive experiences. For

such research, it is necessary to not only measure user expe-

riences using a wide range of behavioral and physiological

sensing devices, but also to collect accurate and precise

emotion labels (i.e., ground truth).

To better understand users’ emotion in virtual environ-

ments, recent research has measured user emotion states by

collecting quantifiable user behavioral and physiological sig-

nals [9]–[11]. Common physiological measurements include

Electroencephalography (EEG), Heart Rate Variability (HRV),

and Electrodermal Activity (EDA). These are used in Quality

of Experience (QoE) studies [12], Affective Virtual Reality

Systems (AVRS) aimed at immersive emotion induction [13],

and sensor-based affect data collection [6]. An important

aspect of such virtual experiences is that individuals interact

differently across emotion induction scenarios. In this respect,

prior work has revealed a significant relationship between

viewing behavior such as head movement (HM) and eye

movement (EM) and dimensional emotion aspects of valence

and arousal [14], [15]. However, emotions can be subjective

and constructed (cf., facial emotion expressions [16]), where

user behavior within VR can exhibit high variance across

individuals. This means that for some emotional states, we

do not always observe a clear overt behavioral manifestation,

or what we observe may not represent the users’ true emotion

state. Given this, user self-reports are essential to assessing

whether a VR experience results in a dominant emotion.

Widely used emotion annotation methods are typically done

post-stimuli (i.e., retrospectively after the experience), like

Self-Assessment Manikin (SAM) [17], which divide human

emotions into discrete basic emotion categories. Considering

the time-varying nature of emotion [18], [19], there has been

work on continuous emotion annotation systems which enable

collecting more precise ground truth labels, and continuously

through the duration of an experience [20]–[22]. As Toet et al.

[23] pointed out, existing methods of collecting emotion data

for 360◦ videos are either time consuming, require significant

cognitive effort and task explanations, or are performed outside

the VR environment [23], which interrupts the immersive

experience. This requires new techniques and approaches for

collecting continuous emotion ground truth data within a VR
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Fig. 1. (a) A participant in our experiment watching a 360◦ video using the HTC VIVE Pro Eye HMD and annotating her emotional state using a Joy-Con
controller, while wearing an Empatica E4 Wristband on the non-dominant hand. (b) The system schematic shows various aspects of the experiment set-up
and data acquisition. (c) Valence-Arousal model space based on Russell’s Circumplex model [1]. In our annotation system, four distinct colors are selected
across quadrants (HEX values = #eecdac, #7fc087, #879af0, #f4978e for quadrants one to four clock-wise, respectively, which has been shown to be intuitive
and easy for users to understand [2])

environment, with minimal interruption of user engagement

while immersed in a VR experience.

Within the 360◦ video research, there have been several

public datasets focused on the study of visual attention patterns

[24], [25], visual quality assessment [26], or user viewing

behavior [14]. For viewing behavior, this includes HM data

and post-stimuli SAM ratings to explore the possible links

between HM and valence/arousal. To further enable advances

in emotion within VR environments, there is a need to create a

high quality multi-modal dataset that contains HM/EM, phys-

iological signals and corresponding continuous and precise

ground truth emotion labels collected during immersive, vir-

tual experiences. Our work offers two primary contributions:

(1) Dataset: We conducted a controlled user study with

32 participants where each watched eight one-minute 360◦

video clips (as shown in Fig. 1a), and publicly make avail-

able the Continuous Physiological and Behavioral Annota-

tion Dataset for 360◦ VR Videos CEAP-360VR Dataset.

Our multi-modal 360◦ video dataset features precise and

continuous emotion annotations alongside measured behav-

ioral and physiological signals. Our dataset is publicly avail-

able at https://github.com/cwi-dis/CEAP-360VR-Dataset and

https://www.dis.cwi.nl/ceap-360vr-dataset.

(2) Analysis: We performed statistical analyses to validate

our collected data, better understand affective states in 360◦

VR videos, and enable reproducibility and usage of our

data by subsequent work. By automatically classifying self-

reported affective states, we provide a means to assess the

relationship between physiological and behavioral measures,

and the moment-by-moment affective states during immersive

360◦ VR video watching experiences. We tested our dataset

with common baseline classification methods, including both

classical machine learning (ML) and deep learning (DL)

classifiers. Results with a Random Forest classifier using a

2s segment length show good classification accuracies: for

a subject-dependent model, 68.45% (V) and 71.33% (A) for

binary classification, and 60.42% (V) and 62.38% (A) for 3-

class classification; for a subject-independent model, 66.80%

(V) and 64.26% (A) for binary classification, and 49.92%

(V) and 52.20% (A) for 3-class classification. Furthermore,

results from an ablation study shows that using only behavioral

signals or only physiological data can yield reasonable recog-

nition accuracies, however using both modalities improves

classification performance.

Our dataset can be used for building more temporally pre-

cise emotion recognition models for 360◦ VR video watching.

This can additionally be used for further analysis on visual at-

tention modelling on 360◦ videos [4], [27], with considerations

of momentary emotion self-report states. Researchers can also

explore the relationship between HM/EM features and discrete

self-reported affective states based on our dataset [15], [28].

Also, the diverse set of physiological signals collected can

be used to conduct implicit perceptual experience analyses in

HMD-based VR environments [29]. To summarize, our dataset

can further advance the HMD-based 360◦ video community’s

understanding of momentary (self-reported) emotion states,

and physiological and behavioral responses.

II. RELATED WORK

In this section, we provide a review of datasets related to

emotion recognition and 360◦ videos.

A. Datasets for Emotion Recognition in 2D Videos

There have been various datasets based on both explicit and

implicit modalities evoked by 2D video stimuli. Soleymani

et al. [30] presented work on emotion recognition where

they analyzed the physiological responses (Electrocardiograph

(ECG), EDA, EEG, Respiration (RESP), SKT) of 27 partic-

ipants who watched various stimuli including 34 videos and

some images. The proposed MAHNOB-HCI dataset contains

face video, eye gaze data and discrete scale of valence

dominance, predictability as well as emotional keywords. The

DEAP dataset [31] consists of implicit tagging from EEG and

peripheral physiological signals (Electrooculography (EOG),

EDA, RESP, Blood Volume Pulse (BVP), ECG, SKT) of

32 participants while watching 40 video clips. It includes a

continuous scale of arousal, valence, liking, dominance and

discrete scale of familiarity. Similarly, Abadi et al. [32] added

Magnetoencephalogram (MEG) and presented the DECAF

dataset. It contains a discrete scale of valence, arousal and

dominance of 30 participants while watching 40 videos and

36 movie clips. The dataset AMIGOS [33] is compiled to

model multi-class emotional data including EEG, ECG, EDA

from 40 participants during the viewing of 20 short and long

videos. It includes annotations of both internal self-assessment

(scale questionnaires) and external assessment (frontal and full

body videos) of affective levels. In the ASCERTAIN dataset

presented by Subramanian et al. [34], the data recordings con-

sist of physiological modalities (ECG, EDA, EEG) and facial

activity. Discrete scale of valence, arousal, liking, engagement,

familiarity and Big Five personality are also included. More
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recently, Sharma et al. [20] collected the CASE dataset of 30

participants in responses to eight validated videos. It includes

synchronized recordings of physiological signals (ECG, BVP,

EDA, EMG, SKT, RESP) and continuous reporting of valence

and arousal. However, these datasets did not consider studying

participants’ emotions in virtual environments.

B. Datasets for 360◦ Videos

Previous studies [3], [12] have presented comparisons of

QoE factors such as presence, engagement, usability and

sickness while watching 360◦ videos among HMD, CAVE-

based and 2D-based display screen. The results indicated

that users can experience higher QoE ratings with an HMD.

Recently, Qiao et al. [35] proposed a novel visual saliency

model to predict viewport-dependent saliency on 360 videos

considering both head movements and eye fixations. Several

datasets report HM traces of users while watching 360◦ videos

for visual attention research. Corbillon et al. [24] captured

viewport traces of 59 participants watching five 70s videos.

In [36], six videos were shown to 17 participants and the

results of recorded scanpaths and fixation points suggest that

users’ attention is guided by moving objects. In another study

[37], the PVS-HM dataset is created based on HM data of 58

subjects watching 76 videos. Analysis of the dataset indicates

that there is similarity and a strong center bias across subjects.

For 360◦ video, HM indicates the position of the subjects’

viewport, while EM could reflect where the subject fixates

on [4]. The Salient360 dataset constructed by David et al.

[25] contains 19 immersive videos and 57 subjects’ HM/EM

data. The head+eye and head-only saliency maps and scan-

paths are also included. Li et al. [26] proposed the VQA-

OV, a 360◦ video dataset with HM, EM data and subjective

quality scores of the sequences to study the links between user

behavior and subjective evaluation on visual quality. Zhang et

al. [38] presented a dataset including head and eye fixations

of 104 videos watched by 20+ subjects for better modelling

dynamic saliency. To explore HM/EM saliency prediction in

dynamic 360◦ immersive videos, Xu et al. [39] presented a

large-scale VR dataset including both HM and EM data of 31

participants watching 208 videos. Nguyen et al. [40] built a

saliency dataset and proposed PanoSalNet, a saliency detection

model.

Although human behavior in VR has been thoroughly inves-

tigated, few datasets have been developed using 360◦ videos

for emotion induction research. One of the first datasets is

gathered by Li et al. [14]. It contains HM data and correspond-

ing ratings of arousal and valence captured with 93 participants

watching 73 videos, given the purpose of exploring links

between HM and emotions when viewing VR content. More

recently, Tang et al. [28] reported an eye tracking dataset with

valence and arousal scores from 19 participants watching 360◦

images to study the influence of emotions on eye behavior in a

virtual setting. Their analysis showed that negative emotions

have a significant impact on fixation and saccade features,

while positive and neutral content do not. In our prior work,

we additionally analyzed HM/EM features across fine-grained

emotion labels from 360◦ video segments with varying lengths

(5-60s) [15]. Our exploratory work showed that standard

deviation of HM yaw negatively correlated with valence,

HM pitch positively correlated with arousal, while standard

deviation of EM yaw negatively correlated with valence, and

EM pitch negatively correlated with arousal. Furthermore,

recent studies in 360◦ videos took advantage of the relationship

between physiological signals and users’ emotions. Egan et

al. [12] first took EDA and HR together to assess QoE in

VR content. Marín-Morales et al. [6] recognized subjects’

valence and arousal perceptions from EEG, HRV features and

embedded SAM ratings in virtual environments. The findings

validate that VR has the capacity to elicit emotional states

and allow emotion recognition from physiological responses

as with 2D videos. However, most of the existing research

are based on authors’ own data collection, which leads to

limited accessibility for other researchers to reproduce results

[41]. In addition, these studies pay attention to the user

experience of VR and ignore the viewing behavior, as well as

continuous emotion reports. To bridge these gaps, we propose

the public CEAP-360VR dataset for emotion recognition in

virtual environments watching 360◦ videos, containing both

physiological signals and the corresponding viewing behavior

data, as well as continuous self-report emotion ratings.

III. EXPERIMENT PROTOCOL

In this section, we present our experiment protocol. This

study was carried out in accordance with the recommendations

of the Ethics Committee of our institute. Data collection was

approved by the board and all participants. Below we describe

our experiment setup and procedure.

A. Experiment Setup

We show the experiment architecture in Fig. 1b, and each

part is described in detail below.

(1) Participants viewed the 360◦ video clips through HTC

Vive Pro Eye1 HMD (in Fig. 1b(1)), with a reported 0.5◦ accu-

racy and frequency of 120Hz Tobii Pro eye tracker integrated.

The HMD provides a resolution of 2880 x 1600 pixels, a 110◦

field of view and a refresh rate of 90Hz. In parallel, the audio

signal is sent to the HMD. During the experiment, participants

sat on a swivel chair and were free to look in any direction.

Correspondingly, head rotation and eye gaze data from the

headset were recorded at 120Hz.

(2) The joystick used was a generic wireless digital gaming

peripheral, called Joy-Con2, as shown in Fig. 1b(2). With a

return spring, the proprioceptive feedback could aid realigning

to center position under no force, which makes it suitable

for continuous annotation while wearing an HMD. Also, we

added a 11-mm heighten cap to extend the length of the

joystick, thereby helping to increase flexibility of operation.

The movement of the joystick head maps into a 2D Valence-

Arousal space, in which the x axis indicates valence while the

y axis indicates arousal, as shown in Fig. 1b. Participants were

instructed to annotate their emotion experience by moving

1https://enterprise.vive.com/us/product/vive-pro-eye/
2https://www.nintendo.com/switch/choose-your-joy-con-color/
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TABLE I
DESCRIPTION OF 360◦ VIDEOS USED IN OUR EXPERIMENT. V = MEAN VALENCE RATING; A = MEAN AROUSAL RATING

VideoID Type
DatasetID

(V, A)

PilotStudy

(V, A)
Name YoutubeID

Start

Offset
SpI TpI

Audio

Categories

Video

Attributes
Description

V0 Training
63

(6.36, 5.93)
/

NASA -

Encapsulation &

Launch of

OSIRIS Rex

D7-AmamuJEA 7s 51.91 0.93
voice-over,

bgm

indoor,

docu-

mentary

Documentary film on

planning and execution

of rocket launches

V1 HVHA
50

(7.47, 5.35)
(7.08, 6.08)

Puppies host

SourceFed

for a day

c7sA3EdXSUQ 0s 61.41 9.14 bgm

indoor,

action,

dogs

Viewers get up close

with some puppies

V5 HVHA
52

(6.75, 7.42)
(6.83, 7.42) Speed Flying g6w6xkQeSHg 0s 65.04 12.88

dialog,

bgm

outdoor,

sport,

pilot

Viewer follows a

speed wing pilot as he

glides past mountain

V3 LVHA
21

(3.20, 5.60)
(2.58, 6.83)

Zombie

Apocalypse

Horror

pHX3U4B6BCk 65s 55.98 2.61

dialog,

ambience,

bgm

indoor,

film,

zombies

Film following some

soldiers defending

against zombie attack

V7 LVHA
68

(4.40, 6.70)
(4.42, 7.17) Jailbreak 360 vNLDRSdAj1U 127s 46.78 2.25

dialog,

ambience,

bgm

indoor,

action,

criminal

Short film depicting

a jailbreak from

closed-circuit cameras

V2 HVLA
38

(6.13, 1.80)
(8.08, 1.91)

Mountain

Stillness
aePXpV8Z10Y 10s 39.42 0.97 bgm

outdoor,

tour,

mountain

Atmospheric shots of

Canadian snowy

mountains

V6 HVLA
32

(6.57, 1.57)
(7.67, 1.50)

Malaekahana

Sunrise
-bIrUYM-GjU 0s 47.34 0.36 ambience

outdoor,

tour,

sunrise

Viewer sees the sun

rising over the

horizon at a beach

V4 LVLA
14

(2.53, 3.82)
(2.42, 4.17) War Zone Nxxb_7wzvJI 3s 62.99 1.54

voice-over,

ambience,

bgm

outdoor,

film,

people

Journalistic clip of

a war torn city

V8 LVLA
19

(2.73, 3.80)
(2.17, 3.17)

The Nepal

Earthquake

Aftermath

5tasUGQ1898 41s 76.11 2.07

voice-over,

ambience,

bgm

outdoor,

film,

buildings

Short film on the

effects of an

earthquake in Nepal

abandon HVHA
69

(6.46, 6.91)
(4.17, 7.00)

Walk the

tight rope
JtAzMFcUQ90 10s / / / /

Viewer experiences

walking a tight rope

over a canyon

abandon HVHA
73

(6.27, 6.18)
(5.50, 6.58)

Through

Mowgli’s Eyes
bUiP-iGN6oI 13s / / / /

Short film with a

conversation between

an ape and a boy

the joystick head into one of the four quadrants. To increase

the emotion intensity, participants could move the joystick

head further. The annotation data was sampled at 10Hz, in

accordance with research on human motor control [42].

(3) We also developed an on-demand helper function, so

that participants who forget what color maps to a quadrant

with corresponding emotions could use it for easy lookup.

This on-demand reference functionality is activated through

a joystick button press event. We show the helper function

in Fig. 1b(3), where we just include the most representative

emotion keyword (by contrast to several keywords in Fig. 1c).

(4) After each video, participants were asked to report their

emotional experience using a within-VR SAM rating. A SAM

rating [17] panel was embedded in VR to visualize the 9-point

scales of valence and arousal, which allows users to stay closer

to the context of an ongoing exposure than outside of the VR

[43]. Arousal scale ranges from “calm” (1) to “excited” (9),

while valence ranges from “unhappy” (1) to “happy” (9), as

shown in Fig. 1b(4). Participants could gaze at one picture and

use the X button on the Joy-Con controller to indicate their

self-assessment level.

(5) We constructed a custom scene in Unity Engine3 (ver-

sion 2018.4.1f1) to display 360◦ videos and audio and show

the annotation feedback based on users’ continuous ratings.

Equirectangular content was projected onto the skybox while

the camera was fixed into the center of the sphere. We

3https://unity.com/

integrated the Tobii Pro SDK4 to collect data from HMD and

eye tracker, along with the SteamVR SDK5 which provides

virtual reality support. The project ran on a 2.2 GHz Intel i7

Alienware laptop with an Nvidia RTX 2070 graphics card.

(6) We captured participants’ physiological signals through

the Empatica E4 wristband6 worn on the non-dominant hand

[44], as shown in Fig. 1b(6). This device can measure BVP,

EDA and SKT. It also contains a 3-axis accelerometer, and a

built-in application which calculates HR and IBI from BVP.

(7) A mobile device (Nexus 5, 32GB, 5 inches, 1920-1080)

was used to collect data from the E4 band via Bluetooth.

Timestamp of this device was set according to the clock of

the experiment laptop, synchronized via an NTP server7.

(8) Validated questionnaires for sense of presence, work-

load, and level of motion sickness are used as subjective mea-

sures. We chose a standardized Simulator Sickness Question-

naire (SSQ) [45] to measure the level of motion sickness, and

use the Igroup Presence Questionnaire (IPQ) [46] to evaluate

perceptions of VR videos. For perceived workload, we used

the NASA Task Load Index (NASA-TLX) questionnaire [47].

4http://developer.tobiipro.com/unity/unity-getting-started.html
5https://store.steampowered.com/app/250820/SteamVR/
6https://www.empatica.com/en-int/research/e4/
7android.pool.ntp.org/
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Fig. 2. The experiment procedure.

B. Independent Variables

Drawing on the Circumplex model of emotion (shown

in Fig. 1c), there are four types of videos depending on

valence and arousal scores, namely high valence / high arousal

(HVHA), high valence / low arousal (HVLA), low valence /

low arousal (LVLA), low valence / high arousal (LVHA). We

follow a 4 (Video Type: HVHA, HVLA, LVHA, LVLA) X

2 (Peripheral Feedback: HaloLight vs DotSize) study design

approach.

1) Stimuli Selection: We selected two sample 360◦ videos

to represent each emotion type (as listed in Table I) from

the database provided by Li et al. [14], which contains

mean valence and arousal ratings (mean V-A ratings) from

95 subjects. We used youtube-dl8 to download the contents

from YouTube with 4K in resolution (3840 x 1920 pixels),

equirectangular format. The videos come in different lengths

and most are longer than 2 minutes, so we extracted a 60s

segment from each of them with no scene cuts. A pilot study

with 12 researchers from our institute indicated that clipped

60s videos still provided the same V-A ratings, and valence

and arousal were rated similarly across participants, as shown

in previous work [27].

In addition, we computed the Spatial Perceptual Information

(SpI) and Temporal Perceptual Information (TpI) for eight

selected videos in equirectangular format [48] to depict spatial

and temporal complexity. SpI indicates the amount of spatial

detail and is higher for more spatially complex scenes. TpI

indicates the amount of temporal changes and is higher for

high motion sequences. We did a two-way consistency intra-

class correlation (ICC) analysis between valence/arousal labels

from original dataset and SpI / TpI and the results show

that there is no correlation (p > 0.05). This is not surprising,

as our videos were selected on the basis of their emotion

ratings, rather than other features such as spatial and temporal

complexity. However, the low correlations do suggest that

these features do not provide a confound with our emotion

labels. Furthermore, the video attributes indicate some high-

level semantic attributes such as indoor/outdoor, video cate-

gory and objects of interests. The audio categories including

background music (bgm), ambient sound (ambience), dialog

and voice-over. Links and start time offset as well as valence

and arousal scores are also presented in Table I.

Fig. 3. Two peripheral visualization feedback methods.

8https://github.com/ytdl-org/youtube-dl

2) Peripheral Feedback: Since users need to annotate their

emotions in real-time while watching 360◦ videos, this will

lead to divided attention. We contributed HaloLight and Dot-

Size methods to provide peripheral feedback and minimize

workload [49]. As shown in Fig. 3, HaloLight is a shaded

halo arc in bottom-right viewport, which varies in transparency

with emotion intensity. DotSize is a circle dot in bottom-right

viewport, which varies in size with emotion intensity.

C. Participants

32 participants between the ages of 18 and 33 (M=25,

SD=4.0) from different culture backgrounds participated in

our data collection experiment. They were recruited by posters

from near universities. All participants reported normal or

corrected-to-normal vision and were not color-blind. They

received monetary compensation for their participation. 50%

of the participants are female and 27 participants have used

VR devices less than five times before.

D. Experiment Procedure

We show the experiment procedure in Fig. 2. Duration of

the entire session lasted around 50 minutes.

(1) Prior to commencing the experiment, we asked the

participant to carefully read and sign the consent form and fill

in a background information sheet. Then we gave a general

explanation about the experiment steps and tasks, including

the 2D Circumplex model (Fig. 1c) and how to annotate with

the joystick. After all the questions about the experiment were

addressed, we asked the participant to finish a pre-study SSQ.

(2) During the eye-tracker calibration session, we first

helped the participant measure their Inter-Pupillary Distance

(IPD). Then the participant sat in a swivel chair and put on E4

wristband and HMD. The embedded eye tracker was calibrated

following the VIVE Pro Eye instruction9. The calibration of

eye tracker was performed every time the user put on the

HMD, namely, before Block 1 and before Block 2.

(3) During the training session, we showed a documentary

360◦ video. The participant was orally instructed to get fa-

miliar with continuous emotion annotation method and visu-

alization feedback, as well as 360◦ video viewing experience

by moving their head and rotating the chair. This session took

place before each block.

(4) Our main experiment consists of two blocks. In each

block we fixed the peripheral feedback, and let participants

watch four representative videos from each of the four quad-

rants. To counterbalance the effect of HaloLight and DotSize,

half participants experienced HaloLight in the first block and

then DotSize in the second block. For the other 16 participants,

we showed DotSize in the first block and then HaloLight in

9https://www.vive.com/us/support/vive-pro-
eye/category_howto/calibrating-eye-tracking.html
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Fig. 4. (a) Combined annotation trajectories for eight selected videos from 32 participants. (b) Boxplots for mean ratings of valence and arousal. (c) Pairwise
comparisons of mean valence (left) and arousal (right) ratings across eight videos, with colors depicting different significance levels (p < 0.001, highly
significant; 0.001 < p < 0.05, significant; p > 0.05, not significant).

the second block. Furthermore, we applied fractional factorial

design [50] to counterbalance the effect of different videos

within each block. To unify participants’ starting position,

before each video played, there was a black scene displayed

in the HMD. We asked participants to find a white cube

placed in the scene and then gaze at it. The cube would be

highlighted in red while the participant gazed at it. If the cube

is highlighted for five seconds, the cube disappears and the

video immediately starts playing. In our early tests, we tried

other mechanisms like marking the position of the swivel chair,

however the advantage of showing a cube is that we can unify

users’ fixation consistency in the HMD. We introduced this

step to participants during the pre-study session.

(5) While a participant viewed a 360◦ video, they rated

emotional states (valence and arousal) continuously using the

joystick. The HMD recorded the HM and EM data continu-

ously, as well as the E4 wristband logged the physiological

data continuously during the study period. To avoid carry

over effects of one emotion to another and reduce the fatigue

of viewing 360◦ video, a delay of 15 seconds was enforced

between two videos. We also ensured a time gap of 5 minutes

between two blocks following prior work [14], [51].

(6) At the end of each video, the participant submitted a

SAM rating using the Within-VR SAM rating panel. At the

end of each block, we helped the participant remove the HMD

and fill in the SSQ, IPQ, NASA-TLX forms and then a semi-

structured interview with five questions about user experience

after the two blocks.

IV. DATA VALIDATION AND DISCUSSION

In a previous study [27], we conducted a controlled usabil-

ity evaluation and found no significant differences between

HaloLight and DotSize concerning motion sickness, presence

or mental workload, and both techniques do not result in

high sickness, workload, nor break presence. Thus in this

section, we combined the collected annotations and behavioral

data from HaloLight and DotSize and show the results of

descriptive statistics.

A. Continuous Annotation Analysis

We combined 32 participants’ annotation data by calculating

the mean V-A ratings at each frame for each video. The

generated eight trajectories are shown in Fig. 4a. It can be

seen that the results of continuous annotations are consistent

with the intended emotional experiences of the stimuli videos.

Two videos pertaining to the same emotion type span the same

quadrant, thus exhibiting agreement in subjective ratings. For

different videos annotated across participants, 68.4% of anno-

tation sequences appear in more than two emotion quadrants.

The mean of difference between the maximum and minimum

values from eight videos annotated by all participants for va-

lence ranged from [2.475,6.157](M = 4.637,SD = 0.859), for

arousal ranged from [2.678,6.532](M = 4.831,SD = 1.074),
indicating that for certain video types, participants used a wide

range for annotating, and were not limited to annotating one

dimension only.

The mean V-A ratings across 32 participants for eight videos

spanning four quadrants are shown in Fig. 4b. We can find

that the mean V-A ratings of eight videos are consistent with

the video categories listed in Table I. For example, V1 and

V5 belong to HVHA and the mean V-A ratings are >5.

To further test the differences among these videos, we run

inferential statistics. A Shapiro-Wilk test showed both the

mean of valence and arousal are not normally distributed

(p< 0.05). As we are comparing eight groups within-subjects,

we performed a Friedman rank sum test on the mean of

valence (χ2(7) = 146.44, p < 0.01) and then on the mean of

arousal (χ2(7) = 120.48, p < 0.01). The results show signif-

icant effects of video emotions on V-A ratings. A post-hoc

test using Bonferroni pairwise comparisons was performed

to precisely determine whether the ratings of any two videos

are similar or different [20], [42], where the results of these

comparisons are presented in form of symmetric matrix plots

in Fig. 4b&c. Effect sizes for significant post-hoc pairwise

comparisons between each video on valence ranged from

[0.943,1.675], while for arousal ranged from [0.815,1.655].
Most of the cases are in line with our expectations, with no

significant differences (p > 0.05) among videos with the same

emotion type, and high significant differences (p < 0.001)

among videos with the opposite emotion type. However,

in some cases, as reported in the literature [52], [53], this

was not the case. We could find high significant differences

(p < 0.001) between HV (V1, V2, V5 and V6) and LV (V3,

V4, V7 and V8) videos. Beyond that, there are also significant

differences (0.001 < p < 0.05) between V4 and V8, as well

as V7 and V8, probably because V8 immersed users in the
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Fig. 5. A sample thumbnail frame with its saliency map for each video from 32 participants.

aftermath of the Nepal earthquake with lower valence value

than others. For arousal ratings, there are high significant

differences (p < 0.001) between HA (V3, V5 and V7) and

LA (V2, V4, V6 and V8) videos. The significant differences

(0.001 < p < 0.05) between V1, a cute puppy video with V2,

V4 and V8 are not expected to be high. One reason is that

more than 50% of participants during the interview said they

liked dogs very much, so they were relatively relaxed while

watching V1. In addition, V4 and V6 are also significantly

different (p< 0.05), which may be due to the very low arousal

value of V6, with the theme of Hawaiian sunrise.

B. Within-VR SAM Analysis

Fig. 6. Boxplots for SAM ratings of valence and arousal.

We show the results of within-VR SAM rating in Fig. 6,

which are consistent with expectations. By a two-way random,

absolute agreement, average-measures ICC, the results show

excellent reliability for the SAM valence (ICC = 0.984, p <

0.05) and arousal (ICC = 0.951, p < 0.05) ratings, indicating

that the SAM valence and arousal were rated similarly across

participants [54]. Moreover, to assess the agreement of the two

rating methods (within-VR SAM rating and continuous anno-

tation), we performed a two-way mixed, absolute agreement,

average-measures ICC. The average resulting ICCs regarding

the eight videos suggest excellent reliability for the valence

score, total average ICC = 0.882, p< 0.05, and good reliability

for the arousal score, total average ICC = 0.714, p < 0.05.

Together they indicate that: (1) the within-VR SAM rating

and the continuous annotation methods have a high degree

of agreement and (2) valence and arousal are rated similarly

across the two rating methods.

C. HM and EM Data Analysis

We first analyze whether viewing behavior among partici-

pants is similar, which is an essential indicator of how robust

TABLE II
THE MEAN AND STANDARD DEVIATIONS VALUES OF CC FOR HM AND

EM SALIENCY MAPS BETWEEN Group1 AND Group2 FOR EACH VIDEO

VID CC (HM) CC (EM)

V1 0.881 ± 0.016 0.913 ± 0.012

V2 0.843 ± 0.010 0.952 ± 0.042

V3 0.862 ± 0.047 0.956 ± 0.023

V4 0.917 ± 0.050 0.967 ± 0.032

V5 0.883 ± 0.064 0.971 ± 0.013

V6 0.915 ± 0.046 0.960 ± 0.025

V7 0.861 ± 0.064 0.970 ± 0.012

V8 0.854 ± 0.042 0.926 ± 0.021

our behavior data is [4]. To test the consistency among partic-

ipants while watching 360◦ videos, we follow Qiao and Xu et

al.’s work [35], [55] in our experiment. We divided participants

into two groups Group1 and Group2 randomly and equally

and then generated the HM and EM saliency maps of the

two groups for each frame. Then Pearson’s linear correlation

coefficient (CC) score [56], [57] is calculated to evaluate

similarity of saliency maps, which ranges from -1 (perfectly

inversely correlated) to 1 (perfectly correlated). Mean and

standard deviations of CC are reported in Table II, which show

the correlations are sufficiently high (> 0.8) across different

videos. This indicates that the visual attention behavior are

highly consistent among participants while watching the eight

selected videos.

In Fig. 5, we show the EM saliency maps as equirectangular

representations for each video, as obtained from all collected

combined eye gaze sample points of 32 subjects, where the

Y -axis refers to the pitch and the X-axis the yaw values. Much

research [25], [37] has argued that there exists a strong equator

and front bias for human attention while viewing 360◦ videos.

In our study, the viewing directions of all participants were

initialized at the center of the video. We can see from the Fig.

5 that most viewing attention falls into small regions in the

front and center region of the equator. In addition, note that

other than the center region, there still exists potential regions

attracting human attention depending on the video content

[55], [58]. In V3, zombies constantly appear from different

places, while V7’s perspective is to follow a prisoner’s escape

route. Thus the participants’ long-term focus regions are not

unique. For V8 we could find an obvious left bias, one

plausible reason is that an embedded logo from the video

creators is placed in the right-bottom corner.
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D. PD Data Analysis

Fig. 7. Violin plot of the distribution for mean processed PD across eight
videos (left). Pairwise comparisons of mean processed PD across eight
videos, with colors depicting different significance levels (p < 0.001, highly
significant; 0.001 < p < 0.05, significant; p > 0.05, not significant) (right).

Prior work indicated that PD changes can be used as an

indicator of arousal states [59], but also are largely affected

by the lighting conditions [60]. Recently, Pfleging et al. [61]

and Tarnowski et al. [62] modelled PD as the sum of two

contributing factors: (1) PD given lighting conditions, (2) PD

given experiences from task. In our study, since 360◦ videos

were played around and near to the eyes, there was no light

source except for the presentation of 360◦ videos. Thus for

each participant p, PD values affected by video v are calculated

from:

PDp,v = PDp,average −PDp,light (1)

PDp,average is the average PD of both eyes recorded for partici-

pant p, while PDp,light is the PD given luminance condition of

video v. Following Tarnowski et al.’s work [62], we used linear

regression method (coefficients k,b) to model the relationship

between PD and luminance of video v for participant p:
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where PD is the average PD values and Light is the luminance

values calculated by the V component in the HSV color space

for each frame from video v. Then, the estimated value of PD

was calculated from:

PDp,est = kp ∗Lightv +bp (3)

The PDp,est is used to estimate the PDp,light in Equation 1.

We calculated the mean and standard deviation of video

affected PD values (PDp,v) across each video, in which the Z-

score standardization across each participant was performed

to eliminate different inter-personal baselines. The results are

presented in Fig. 7(left). According to a Shapiro-Wilk normal-

ity test, the gathered data was not normally distributed (p <

0.001). A Friedman rank sum test revealed a significant effect

of video types on PD values (χ2(7)= 155.98, p< 0.001). Then

we performed a post-hoc test using Mann-Whitney tests with

Bonferroni correction and show the results in Fig. 7(right).

The effect sizes for significant post-hoc pairwise comparisons

between each video ranged from [0.475,0.859]. The influence

of arousal states on PD values are evident in our data. For

instance, there are significant differences (p < 0.05) between

HA videos (V1, V3, V7) and LA videos (V2, V4, V6) for

PDp,v values. It is worth noting that the results of LVLA videos

were not as low as expected, which indicates that compared

with watching sad videos, the arousal is not as low as watching

relaxed videos.

E. Physiological Data Analysis

Fig. 8. Violin plot of the distribution for the physiological features across
eight selected videos.

We first normalized the values of each physiological signal

after filtering out noise following previous work [63] for

each participant viewing each video and then selected one

predominantly used feature for each signal. The mean of the

first-order differential of EDA signals during video playback

was calculated as EDA changes, following previous research

[11], [42]. We used the mean of SKT and HR values during

each video to describe the time domain variation [63], as mean

SKT and mean HR, respectively. The standard deviation of the

duration of the detected inter-beat interval was acquired for

each video as IBI changes [20]. Due to the lack of IBI data

from P2 and P12, we removed the two subjects and performed

Z-score standardization for other participants.

The violin plots in Fig. 8 report the distributions of the se-

lected features across eight different videos. Similar to Sharma

et al.’s [20] results, we did not find significant differences

for the selected physiological features across different types

of videos. One potential reason is that the length of our

video stimuli is restricted to one minute, which may be short

in duration for clear effects of physiological signals10. One

consideration is that it is difficult to perform standardized data

analysis for videos with inconsistent lengths [31]. Further-

more, longer duration 360◦ videos can lead to higher motion

sickness and workload [14], [64] which can also influence

physiological markers, so there is a trade-off in what can be

done. On the other hand, our findings from Fig. 8 show that

some features can characterize a specific type of video. Prior

work [65] indicated that EDA is known to be highly correlated

with user arousal. In our work, V3 (V=3.20, A=5.60) and V7

(V=4.40, A=6.70) with high arousal labels result in higher

values of EDA changes than other videos. For V4 (V=2.53,

A=3.82) and V8 (V=2.73, A=3.80), the sad videos (LVLA),

the values of all four features are lower than others. We

provide these raw physiological time-series data in our dataset

that change over time, in which the peaks and drops are

10https://support.empatica.com/hc/en-us/sections/200582445-E4-wristband-
data
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TABLE III
COMPARISON OF THE PERFORMANCE USING RF CLASSIFIER, 1D-CNN, AND LSTM, FOR BOTH SD AND SI MODELS FOR 2S SEGMENT LENGTHS. ACC

AND WEIGHTED-F1 SCORES ARE FOR BINARY V-A, 3-CLASS, AND 5-CLASS CLASSIFICATION. HIGHEST ACCURACY IS SHOWN IN BOLD.

Evaluation Classifier
Valence-2 Arousal-2 Valence-3 Arousal-3 5-class

acc w-f1 acc w-f1 acc w-f1 acc w-f1 acc w-f1

SD

(10-fold)

RF 68.45% 0.6315 71.33% 0.6487 60.42% 0.5354 62.38% 0.5457 51.89% 0.4340

1D-CNN 68.46% 0.5739 71.37% 0.6121 51.17% 0.3867 56.85% 0.4502 40.49% 0.2828

LSTM 65.51% 0.6013 71.39% 0.6560 52.91% 0.4755 56.36% 0.5002 44.48% 0.3735

SI

(LOSOCV)

RF 66.80% 0.6238 64.26% 0.5298 49.92% 0.4419 52.20% 0.4341 31.47% 0.3001

1D-CNN 64.27% 0.5828 67.64% 0.5808 45.51% 0.4191 47.17% 0.3923 29.87% 0.2598

LSTM 65.00% 0.6349 66.30% 0.5934 44.62% 0.4269 43.79% 0.4085 30.12% 0.2768

TABLE IV
ABLATION STUDY ACROSS PHYSIOLOGICAL (EDA, IBI, HR, SKT, BVP) AND BEHAVIORAL SIGNALS (HM//EM) PLUS PD USING RF CLASSIFIER FOR

BOTH SD AND SI MODELS UNDER 2S SEGMENTS. ACC AND WEIGHTED-F1 SCORES ARE FOR BINARY V-A, 3-CLASS AND 5-CLASS CLASSIFICATION.
HIGHEST ACCURACY IS SHOWN IN BOLD.

Evaluation Component
Valence-2 Arousal-2 Valence-3 Arousal-3 5-class

acc w-f1 acc w-f1 acc w-f1 acc w-f1 acc w-f1

SD

(10-fold)

Physio 65.93% 0.6081 68.32% 0.6124 54.83% 0.4794 59.96% 2 0.5244 45.20% 0.3647

HM/EM + PD 67.41% 0.6214 69.24% 0.6268 58.29% 0.5147 61.46% 0.5326 50.57% 0.4215

Physio + HM/EM + PD 68.45% 0.6315 71.33% 0.6487 60.42% 0.5354 62.38% 0.5457 51.89% 0.4340

SI

(LOSOCV)

Physio 65.69% 0.6126 62.17% 0.5007 44.66% 0.4027 51.45% 0.4200 30.56% 0.2439

HM/EM + PD 62.68% 0.5344 62.43% 0.5022 47.90% 0.4124 50.00% 0.3555 26.33% 0.2440

Physio + HM/EM + PD 66.80% 0.6238 64.26% 0.5298 49.92% 0.4419 52.20% 0.4341 31.47% 0.3001

associated with video events [66]. Our data can further help

the community to study the relationship between physiological

signals and 360◦ video content.

V. CLASSIFICATION EVALUATION

To further analyze the validity and reliability of our dataset,

in this section we provide baseline classification experiments

using common machine learning techniques.

A. Baseline Experiments

We draw on prior work [67], where we test three clas-

sification tasks on our dataset: (1) Binary classification for

low / high levels of Valence and Arousal (V-A). (2) 3-class

classification for low / neutral / high levels of V-A. (3) 5-class

classification for the four quadrants of V-A space and neutral

level. Mapping between continuous V-A values and discretized

classes is listed in Table V.

TABLE V
THE MAPPING BETWEEN CONTINUOUS V-A RATINGS AND DISCRETIZED

CLASSES.

Class V-A Ratings (Binary) V-A Ratings (3-Class)

Low [1, 5) [1, 3)

Neutral - [3, 6)

High [5, 9] [6, 9]

5-class Valence Ratings Arousal Ratings

High-High (HH) [5, 9] (5, 9]

High-Low (HL) (5, 9] [1, 5]

Low-Low (LL) [1, 5] [1, 5)

Low-High (LH) [1, 5) [5, 9]

Neutral 5 5

Both classic ML and DL methods are proposed to classify

and predict the value of valence and arousal [67]. For ML

methods, we tested the following: Support Vector Machine

(SVM) [68], Random Forest (RF) [69], Gaussian Naive Bayes

(GaussianNB) [70], and k-Nearest Neighbor (k-NN) [71]. For

DL methods, we tested 1D-Convolutional Neural Network

(1D-CNN) [72] and sequential learning approach, Long Short-

Term Memory (LSTM) [73]. These are the two most basic

and commonly used algorithms in affective computing [74].

Training and evaluation were run on an NVIDIA 2080Ti GPU

server.

1) Feature and Model Selection: We first pre-processed

HM/EM, PD and peripheral physiological signals (EDA, IBI,

HR, SKT, BVP) and then segmented them into 2-s length

(sample size: 32 x 8 x 30 segments) for fine-grained emotion

recognition, following prior work [67]. To train ML methods,

we extracted mean, median, standard deviation for the pitch /

yaw of HM/EM, PD and original, first and second differential

of physiological signals, as well as fixation number, mean,

median, standard deviation for fixation and saccade duration,

and lastly saccade amplitude. These are widely used features

for behavioral and physiological signals in the task of emotion

recognition [28], [75], [76]. Aside from RF, we leave the

default parameter settings for all classic ML classifiers. For

subject-dependent (SD) models, we kept the default parame-

ters (max_depth= 2) for RF. However for subject-independent

(SI) models, given that the amount and complexity of the

training data are larger for SD models, we increase the

maximum depth of the tree (max_depth = 4) to better learn

the latent representation.

For DL methods, we tested 1D-CNN and LSTM on the

processed original data. The 1D-CNN model employs five 1D-

CNN layers whose filter numbers n and sizes s, (n,s) are

(4,64),(16,32),(64,16),(128,8),(128,32), respectively. All

the five 1D-CNN layers are activated by a rectified linear

activation function (ReLU). Then a 1D global max pooling

layer is followed to select the most salient features from

the 1D-CNN layers. A dense layer activated by the softmax

function is put as the last layer for classification. The LSTM

model consists of one LSTM layer with 100 units where we

put the same dense layer as 1D-CNN for classification. The

two models are built with keras and trained with RMSprop

[77] optimizer.

2) Evaluation Metrics: We chose two widely used metrics

in machine learning [78] to evaluate classification perfor-

mance: (1) Accuracy (acc) for the percentage of correct

predictions, (2) Weighted F1-score (w-f1) for the harmonic

mean of precision and recall for each label. We trained and

tested each classification method using both subject-dependent
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(SD) and subject-independent (SI) models. SD models were

tested using 10-fold cross validation and SI models were tested

using Leave-One-Subject-Out Cross Validation (LOSOCV).

The results we show are the mean accuracy and w-f1 of each

fold/subject used as testing data.

B. Results and Discussion

1) Classification Results: Among the classification meth-

ods using default architectures, we found that RF outperforms

SVM, NB, and KNN methods, thus we only show RF results

here and use these results for subsequent analysis. However,

we include the results from the other classifiers in our dataset.

We ran experiments to investigate model performance using

RF, 1D-CNN and LSTM methods for both SD and SI models

under 2s instances. As shown in Table III, the accuracies for

3-class classification are lower than binary classification but

higher than 5-class classification. Given that many instances

(43.32% for 3-class and 27.06% for 5-class) are classified as

neutral, the data imbalance can pose problems when recogniz-

ing emotions using fine-grained emotion labels (cf., [67]).

Compared with SI models, SD models achieve higher accu-

racies and w-f1 scores, especially for 3-class and 5-class clas-

sification on our dataset. The comparable recognition accuracy

of the two models demonstrates that the data volume from one

user is sufficient to train a machine learning model for emotion

recognition. This also lends support that the number of videos

and video lengths we chose for an individual user are sufficient

for running classification experiments. These results provide

support that our models can generalize across behavioral and

physiological data collected in 360◦ VR environments.

2) Ablation Study: To further analyze the effectiveness

of single modality in our dataset, we conducted an ablation

study to inspect the effects of: behavioral data (HM/EM and

PD11) and physiological data (EDA, BVP, HR, and SKT).

The results of binary classification evaluated using both SD

and SI models are shown in Table IV. We found that only

behavioral data or only physiological signals in our dataset can

yield good recognition accuracies. Additionally, the accuracies

from combining physiological signals with behavioral data are

slightly higher than using single modality.

VI. LIMITATIONS

First, we are limited in the selection of 360◦ video stimuli.

The different emotion types of videos used in our experiment

have perceptual differences, for example color or camera

movement, which could affect the user’s viewing experience.

Participants’ personal preferences of the video content may

also affect their emotional assessment [79]. However, due

to the lack of publicly available 360◦ video databases with

validated emotion labels, these could not be explored further

in this work. Furthermore, the age of our participants ranges

from 18-33 (M=25, SD=4.0), recruited from our institute or

nearby institutes, which may not be well spread to other age

groups like seniors. One consideration is that since users need

11PD can be considered as a physiological response, however since we
extract data directly from the HMD, we keep PD as part of the EM data.

to report their emotional states while watching 360◦ videos,

we do not want age to be a dominant factor. However, it

is interesting to consider other population groups which may

have greater difficulty in reporting their emotion (e.g., Autism

Spectrum Disorder [80]). Fourth, we did not collect EEG

because collecting stable, high-quality EEG data is still a

challenge [81], especially for immersive virtual environments

where users wear an HMD [82]. Finally, the performance

of the SI model can still be improved if data imbalance

is addressed (e.g., through data synthesis using Generative

Adversarial Networks [83]).

VII. CONCLUSION AND FUTURE WORK

The contributions of this paper focus on the provision of

a public multi-modal 360◦ dataset and statistical analyses

and baseline classification experiments. We first designed a

protocol to collect fine-grained, continuous emotion labels of

valence and arousal while users watching 360◦ videos in a

VR setting. In our experiment with 32 participants viewing

eight videos, we gathered continuous emotion annotation data,

HM and EM behavior data, as well as PD and peripheral

physiological data (EDA, IBI, HR, SKT, BVP)12.

The primary insights of our analyses are: (1) Mean V-

A ratings from our dataset are reasonably consistent with

the intended attributes of the videos, and there exists high

agreement between continuous ratings and post-stimuli SAM

ratings, indicating the reliability of our data following Sharma

et al. [20]. (2) For all eight videos, we find high correlations

on viewing behavior (HM and EM) among participants, and a

center and front bias on saliency maps, in line with [55], [58].

(3) Similar to [60], [61], we found PD values are positively

correlated with arousal levels, where the ambient light of

the video has an impact on arousal. (4) Preliminary results

for RF under 2s segments show good performance on our

dataset, and an ablation study shows using only behavior data

or only physiological signals can yield reasonable recognition

accuracies, however using both modalities is better.

Furthermore, collecting continuous annotations can be used

to evaluate the performance of fine-grained emotion recog-

nition algorithms (e.g., weakly supervised learning or re-

gression). As mentioned by Romeo et al. [84], the lack of

continuous annotations is the reason why they failed to validate

their weakly-supervised algorithm for fine-grained emotion

recognition. Moreover, if only discrete annotations are avail-

able, ML algorithms can overfit because the discrete labels

represent only the most salient or recent emotion rather than

the dynamic emotional changes that may occur within video

watching (cf., peak-end theory [85]). This can be reduced if

training with continuous emotion labels, since the continuous

labels allow the algorithms to learn the precise mappings

between the dynamic emotional changes and input signals.

To summarize, having continuous annotations becomes essen-

tial for developing and validating continuous or fine-grained

emotion recognition algorithms.

12key steps in the stage of data acquisition and pre-processing are reported
in our dataset.
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Our future work comprises different facets: First, it is

important to conduct further research on saliency models and

attention using our dataset [35], [86], and explore how these

correlate with continuous emotion labels. Second, our dataset

could be used in various application scenarios such as helping

360◦ video makers to understand the emotion and behavior

of people watching 360◦ videos. It can also serve as rep-

resentative moment-by-moment ground truth for developing

machine learning algorithms to automatically recognize the

user’s emotions in 360◦ VR environments. Third, our work

leaves room for future research to design new methods to

capture real-time emotions while watching volumetric videos.

Fourth, we aim on further investigating automatic content

analysis techniques to investigate further how e.g., HM and

EM vary specifically with respect to content of video. To

conclude, CEAP-360VR is the first public, multi-modal dataset

with continuous emotion annotation data, behavior and phys-

iological data, which can enable future research on emotion

understanding and prediction within 360◦ VR environments.

VIII. SUPPLEMENTARY MATERIAL

Our dataset includes the raw and processed data from

all 32 participants and eight selected videos, the processing

and validation scripts, along with dataset description and key

steps in the stage of data acquisition and pre-processing. All

data were saved in JavaScript Object Notation (JSON) [87],

a well-known file format that has native support by most

programming languages. This makes the data accessible and

easy to process. Also, the scripts to prepare data and features

for running ML experiments are reported in our dataset.

The dataset and processing scripts are publicly avail-

able on GitHub (https://github.com/cwi-dis/CEAP-360VR-

Dataset), under the following license: Creative Commons

Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

license. Our dataset can be additionally retrieved on a dedicate

webpage (https://www.dis.cwi.nl/ceap-360vr-dataset).
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