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ABSTRACT

Automatically inferring drivers’ emotions during driver-pedestrian
interactions to improve road safety remains a challenge for design-
ing in-vehicle, empathic interfaces. To that end, we carried out
a lab-based study using a combination of camera and physiologi-
cal sensors. We collected participants’ (N=21) real-time, affective
(emotion self-reports, heart rate, pupil diameter, skin conductance,
and facial temperatures) responses towards non-verbal, pedestrian
crossing videos from the Joint Attention for Autonomous Driving
(JAAD) dataset. Our findings reveal that positive, non-verbal, pedes-
trian crossing actions in the videos elicit higher valence ratings
from participants, while non-positive actions elicit higher arousal.
Different pedestrian crossing actions in the videos also have a sig-
nificant influence on participants’ physiological signals (heart rate,
pupil diameter, skin conductance) and facial temperatures. Our find-
ings provide a first step toward enabling in-car empathic interfaces
that draw on behavioural and physiological sensing to in situ infer
driver emotions during non-verbal pedestrian interactions.

CCS CONCEPTS

« Human-centered computing — Human computer interac-
tion (HCI); Empirical studies in HCIL.
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1 INTRODUCTION

There is an increasing interest within the automotive industry to
develop empathic cars'?, which can infer driver emotions [24]. This
is because human emotions that may arise during driving scenarios
(particularly anger or stress) are known to adversely impact driving
behaviour [9, 21]. Therefore, identifying these emotions during
driving scenarios and conveying this information to drivers such
that emotions may be regulated in a timely manner are considered
crucial factors for improving road safety [23, 58, 59]. While envi-
ronmental (weather, roads) and situational (traffic) factors have
previously been considered for inferring drivers’ emotional states
[4, 15, 22], the non-verbal interaction between a driver and pedes-
trian(s) has received less attention. Considering that pedestrian
non-verbal behaviour is often a source of negative driver emotion
[58], automatically capturing drivers’ affective responses toward
pedestrian non-verbal actions can aid in designing empathic, in-
vehicle interfaces, thus leading to increased road safety.

To investigate the influence of such pedestrian crossing actions
using physiological and camera sensors, we adopt a highly con-
trolled experimental approach, where we show such pedestrian
crossing actions through recorded videos. Given the foregoing, in
this paper we ask (RQ): how do people’s affective responses vary in
response to different non-verbal, pedestrian crossing actions shown
through video stimuli? To answer this, we conduct an in-lab study
where participants with driving experience (N=21) watched 10 short
videos of driving scenarios (involving different pedestrian actions)
from the publicly available Joint Attention for Autonomous Driving
(JAAD) dataset [11, 41, 42]. Non-verbal pedestrian actions (e.g. a
nod or eye contact) towards drivers persist for a very brief period
of time and therefore pose a significant challenge when capturing
a driver’s affective response induced by such pedestrian actions
[13, 31, 43]. Moreover, several pedestrians performing different ac-
tions may be present at the crosswalk at any given point. Therefore,
identifying the relevant pedestrian impacting the driver’s affective
state is also a non-trivial task [45]. Given this, we select participant
(driver) emotion-inducing stimuli (positive and non-positive) from

Uhttps://www.theguardian.com/business/2018/jan/23/a-car-which-detects-emotions-
how-driving-one-made-us-feel
https://www.irishtimes.com/business/transport-and-tourism/researchers-
developing-empathic-car-technology-1.3900701
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the JAAD dataset 3 [11]. To ensure that all relevant participant
signals are captured, we collect participant signals throughout the
entire duration of the experiment and adapt techniques from activ-
ity annotation to segment and identify relevant participant signals
induced by the stimuli (videos). Specifically, we recorded partici-
pants’ responses to the videos in the form of emotion self-reports
(valence and arousal, based on Russell’s Circumplex model of emo-
tion [46]), facial temperatures (using a FLIR Duo Pro R camera),
pupil diameter (using a Pupil Labs eye tracker), and physiological
signals (heart rate and skin conductance using an Empatica E4
wristband).

Our findings show that our in-lab setup can effectively capture
driver affective states from watching videos of non-verbal, pedes-
trian crossing actions. Specifically, we observe that participants
reported higher valence (pleasantness) upon observing positive
pedestrian crossing action videos. On the other hand, participants
reported higher arousal (excitement) upon watching non-positive
pedestrian crossing videos. Additionally, participants’ physiolog-
ical signals (heart rate, skin conductance and pupil diameter) are
significantly influenced (p < 0.05) by the different (positive versus
non-positive) non-verbal, pedestrian crossing actions. These signals
also vary significantly (p < 0.05) for different levels of participants’
valence (positive versus non-positive) and arousal (high versus
non-high) scores. Finally, participants facial temperatures also vary
significantly for different levels of participants’ valence (positive
versus non-positive) and arousal (high versus non-high) scores.

Our exploratory work offers two key contributions: (1): Vali-
dation of non-verbal, pedestrian crossing stimuli (JAAD videos)
that influence participants’ affective states though multi-modal
physiological and camera sensors. (2): Empirical findings which
reveal that non-verbal, pedestrian actions influence participants’
self-reported emotions (valence and arousal), physiological signals
and facial temperatures. In-car emotion recognition research is par-
ticularly interested in determining a driver’s high arousal as well
as low valence states associated with risky driving [5, 47]. Quan-
titative results from our study identify positive and non-positive
non-verbal pedestrian crossing actions that results in high arousal
and low valence participant states. These non-verbal pedestrian
actions may aid in identifying risky driving behaviour arising from
driver-pedestrian interaction. Moreover, the participant affective
cues (physiological, behavioural, and emotion self-reports) may
also be used by empathic, in-car interfaces to automatically infer
drivers’ affective states during driver-pedestrian interactions, as
part of an emotion self-regulation framework for improving road
safety.

2 RELATED WORK

Several research strands contributed in shaping our work, including
prior research on: (a) driver-pedestrian non-verbal interactions in
daily driving scenarios, and (b) measurement of in-vehicle drivers’
affective responses.

3https://data.nvision2.eecs.yorku.ca/JAAD_dataset/
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2.1 Non-Verbal Driver-Pedestrian Interactions

Prior work indicates that non-verbal communication (e.g., body
posture) between drivers and pedestrians is a key factor influenc-
ing driving behaviour [15, 53]. Studies also investigated different
aspects of driver-pedestrian interactions at zebra crossings e.g. eye
contact before crossing [14, 49, 56]. Researchers demonstrated that
pedestrian body language (eg. hand, leg and head movement) to-
wards drivers are important cues that influence positive or negative
driver-pedestrian interactions [12, 25, 51]. However, research on
driver-pedestrian interaction often tends to overlook the impact
of pedestrian actions on drivers’ emotional states. Therefore, in
this study we contribute to a better understanding of the role that
non-verbal pedestrian actions play in influencing a person’s affec-
tive state by measuring their self-reports, physiological signals and
facial temperatures in a controlled video-watching setting.

2.2 Emotion Models and Self-Reports

There are broadly two emotion models - discrete emotion mod-
els (e.g. Ekman’s six basic emotions model [8], Plutchik’s emotion
wheel [39]), and dimensional emotion models (e.g. Circumplex emo-
tion model [46], which consider human emotions as a combination
of valence and arousal; Pleasure-Arousal-Dominance model [33],
which considers human emotions to be a combination of valence
(displeasure vs pleasure), arousal (calm vs excitement), and domi-
nance. In an automotive context, a few studies have explored the
most frequently occurring discrete emotions during driving scenar-
ios. For example, Mesken et al. [34] found that anxiety occurred
most frequently, followed by anger and happiness. Based on users
ease of use and popularity across emotion-measurement studies,
we employ the Self-Assessment Manikin (SAM) model with valence
and arousal dimensions, where each dimension runs on a discrete
9-point scale [3].

2.3 Sensing Emotion Cues from Multi-modal
Physiological and Behavioural Signals

In our work, we capture signals from the participants’ face and
eyes, as well as bio-physiological markers. To capture facial changes,
existing approaches identify the regions of interest (ROIs) from ther-
mal images of the face and head region [30, 37, 59]. Bio-physiological
signals include cardiography (for eg., electrocardiograph (ECG),
heart-rate variability (HRV), heart rate (HR)), electrodermal activity
such as Galvanic Skin Response (GSR), as well as respiratory and
skin temperature related signals [59]. These signals when captured
from the driving context, contain significant noise due to car move-
ments and so is addressed using pre-processing steps like spike
removal [52], bandpass filtering [35] and normalisation (between 0
to 1) to counter the effect of different baselines and physiological
ranges (e.g.[52]). Work has shown that physiological signals such
as EDA and HR show higher autonomic activity during favourable
driving scenarios with the opposite trend during unfavourable situ-
ations [1, 19].

Very few works combined multiple modalities to measure drivers’
affective responses. For example, Malta et al. combined EDA and
Controller Area Network (CAN) behaviour signals to study driver
irritation [32]; Rigas et al. combined several bio-physiological sig-
nals, CAN-bus data, and the Global Positioning System (GPS) signal
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to study driver stress [44]. Hoch et al., and Schuller et al. combined
speech and face to study different sets of driver emotions[20, 50]. Fi-
nally, Bethge et al. developed a novel application to classify drivers’
emotions based on contextual driving data and drivers’ facial ex-
pressions [2]. While the foregoing work has focused on identifying
and classifying drivers’ emotions using contextual factors such as
traffic or environmental conditions, there has been less emphasis on
driver-pedestrian non-verbal interactions. Our study provides the
first investigation on the relationship between multi-modal physi-
ological and behavioural signals, and pedestrian crossing actions
in videos, which contribute a validated set of emotion induction
videos.

3 USER STUDY

We designed a lab-based study to investigate participants’ affective
responses towards video stimuli containing non-verbal, pedestrian
crossing actions.

3.1 Study Design

Our experiment is a 1 (IV1: Emotion Rating Task) x 2 (IV2: Pedes-
trian Crossing Action Video: Positive Action vs. Non-positive Ac-
tion) within-subjects design, tested in a controlled, laboratory envi-
ronment. Participants with driving experience watched 10 videos
from the JAAD dataset recorded from the driver’s perspective.
These videos show pedestrians crossing the road and performing
non-verbal actions towards the driver such as hand waving, nod-
ding etc [26]. For each video, participants rated pedestrian actions
for valence and arousal using the 9-point discrete Self-Assessment
Manikin (SAM) [3]. During the study, participants’ facial tempera-
tures, pupil diameter and physiological signals were recorded. Our
study followed strict guidelines from our institute’s ethics and data
protection committee.

3.2 Experiment Setup

Our in-lab experimental setup consists of the following key compo-
nents: (a) video stimuli, (b) web interface for viewing video stimuli,
and (c) sensors and sensor synchronisation module. Participants are
presented with video stimuli through the web interface, that in turn
triggers the sensors module to record participants’ physiological
signals, pupil diameter, and facial temperatures. Figure 1 shows
the setup with the web-based user interface for displaying video
stimuli and recording participants’ emotion ratings.

3.2.1 Video Stimuli. To induce different types (positive, non-positive)
of emotions among participants, we draw on a validated set of JAAD
dataset videos from a prior study by Ghosh et al. [11]. In this prior
study, 91 participants viewed 25 pedestrian action videos from a dri-
ver’s perspective and rated them for valence (pleasant) and arousal
(excitement) on a 5-point scale. Ghosh et al. [11] thereby identi-
fied the top-five most positive, and bottom-five most non-positive
videos, which we selected for our study. Table 1 shows these 10
JAAD videos, their corresponding pedestrian action and action type
along with the average valence ratings obtained in the prior work
by Ghosh et al. [11].
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‘Thermal Camera

(a) Participant wearing the Pupil (b)) Thermal Camera and
Labs eye tracker while watching projection screen place-
video stimuli. ment.

Please watch the clip and answer the following questions considering you are the driver of the vehicle

In response to pedestrian action(s), please indicate how pleased it would make you feel?
(Nei-lel-Tel Tl ol Jolt fel o))

Not pleased at all Very pleased

I response to pedestrian action(s), please indicate how calm or excited it would make you foel?

Not excited at al (Nl Nel el foll Toll ol Joii Nek') Very excited

(c) The web-based user interface displays the
video stimuli and records the participant’s va-
lence and arousal ratings after each video.

Figure 1: Experiment setup with thermal camera and pro-
jection screen. Participants wear Pupil Labs eye tracker and
watch the projection screen which shows the web-based user
interface for viewing and rating driver-affect inducing stim-
uli.

JAAD Pedestrian Action Action Type  5-Point Avg. Va-
Video ID lence Rating [11])
video 0299 handwave Positive 4.03

video_0165 nod Positive 4.0

video 0135 handwave Positive 3.92

video_0303 nod Positive 3.89

video_0249 eye_contact Positive 3.88

video_0054 handwave

video_0107 hesitant_crossing
video_0092 running_in_the_middle
video_0066 impolite_hand_gesture
video_0272 engage_with_phone

Non-positive  2.79
Non-positive  2.77
Non-positive  2.47
Non-positive 2.3

Non-positive  2.13

Table 1: The 10 JAAD videos used as participant (driver)
emotion-inducing stimuli in this study. These 10 videos
were identified in a prior study based on the average 5-point
valence ratings [11]. Additionally, a positive handwave ac-
tion video (video_0054) was rated as non-positive by partici-
pants [11].
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3.22  Web-based User Interface. To display the video stimuli and
collect valence and arousal self-reports from participants, we de-
veloped a web-based interface (Figure 1c), that was projected on a
46" television (full HD, LCD, 1920x1080, 100Hz) shown in Figure
1b. Upon entering demographic details using the laptop mouse,
participants pressed the Next button that triggers the interface to
send a signal to the hardware setup to start recording data from
all sensors. Given the stimuli was video only, no audio output was
collected from any speakers.

3.2.3 Hardware Setup for Sensor Logs. The hardware setup com-
prises of the FLIR Duo Pro R thermal camera 4 Empatica E4 wrist-
band °, and the Pupil Labs Core wearable eye tracker® (Figure 1a).

The thermal camera facing the participant (without obstruct-
ing their view) is connected to a custom ESP8266 ESP-12 micro-
controller, which runs the software for initiating sensor data record-
ing. When powered, the micro-controller starts an HTTP server
via WiFi, and awaits commands from the central server. The E4
wristband is connected to an Android mobile device running the
EmpaticaRelay application. Once the wristband is switched on, it
connects to the software running on the micro-controller, and starts
a TCP server to which the central server will connect to fetch data.
Finally, the eye tracker is connected to a laptop (MacBook Pro, 1.4
GHz quad core Intel i5, 16GB RAM) running the Pupil Labs Capture
software. Once the tracker is connected and calibrated, the setup is
complete. Thereafter, the experimenter starts the central recording
application, and connects to the sensors via each specified IP ad-
dress. The setup triggers recording of skin conductance, heart rate,
facial temperature, and pupil diameter (PD). Additionally, since
pupil diameter is also quite sensitive to light conditions, we fixed
the illumination in the lab (350+ 5Ix) to ensure that participants’
pupil would be unaffected by illumination changes [38].

3.3 Study Procedure

Before the experiment, an explanation of the study task was pro-
vided to participants, after which we obtained participants’ in-
formed consent. After the sensor setup was complete, participants
entered their demographic (age, gender, location) and driving ex-
perience details (years of experience, country where they mostly
drove) on the web interface. Upon entering their details, the sensors
were synced and the first video stimuli was shown. Following prior
work [29], we ensured 10 seconds long black screens before and
after each video to decrease the effects of participants’ emotions
overlapping between different videos. After each video, participants
entered their valence and arousal ratings using a 9-point discrete
SAM scale (Figure 1c). Positive and non-positive action conditions
were counterbalanced across all participants, with the subsequent
trials randomized. Upon completion of the study session, a brief,
semi-structured interview was conducted to gather participants’
overall impression of the experiment. The complete experiment
lasted approximately 60 minutes and participants were provided
with a 10 Euro gift card for participation.

“https://www.flir.eu/support/products/duo-pro-r/
Shttps://www.empatica.com/en-gb/research/e4/
Shttps://pupil-labs.com/products/core/
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3.4 Participants

For this study, participants were required to be at least 21 years of
age and have a minimum driving experience of 1 year. Participants
were also required to not wear eyeglasses that may otherwise im-
pact eye tracking. 217 participants (7f, 14m) aged between 22-64
(M=32.4, SD=11.6) were recruited. Participants were recruited from
academic institutes, and comprised diverse cultural backgrounds
(66% European, 24% Asian, and 10% North American). 76% of par-
ticipants had at least three years of driving experience in Western
Europe (M=9.8, SD=10.7). None reported visual (including colour
blindness), auditory, or motor impairments.

4 STUDY FINDINGS

In this section, we discuss data pre-processing steps undertaken and
report results of participants’ affective response analysis. Specifi-
cally, we discuss: (a) variation across emotion self-reports (b) vari-
ation across physiological signals, and (c) variation across facial
temperature in different regions of the face with respect to different
pedestrian action types. We also summarise the post-study feedback
obtained from participants.

4.1 Data Pre-processing

We performed different pre-processing steps prior to analyzing
the data (resulting dataset is shown in Table 2). These steps are
described below:

4.1.1 Pedestrian Action Segmentation from Video Stimuli. Given
our interest in studying affective responses of participants toward
pedestrian crossing actions, videos from the JAAD dataset had to be
segmented to the relevant aspect of the video ie., the part where the
pedestrian action occurred. The duration of the pedestrian actions
in the videos were identified by adapting the temporal localisation
method which is used in activity annotation [18].

Annotators (N=7) from our institute were asked to mark the
beginning start set and end end set of a pedestrian action in the
10 JAAD videos. From this, K-means clustering was used and the
centroid of majority clusters (clusters having most data points) for
the start set and the end set were used to mark the beginning and
the end of an action [27]. To ensure validity of the annotations, and
since time is on a continuous scale, we computed the intra-class cor-
relation coefficient (ICC) for the action start and end points which
are 0.997 and 0.980, respectively [40]. We used the time values to
extract participants’ physiological signals corresponding to the seg-
mented pedestrian action videos. Finally, for each pedestrian, we
normalized the physiological signal values to handle inter-subject
variability [6, 54]. We scaled as follows:

, x — min(X)

" max(X) — min(X) o

where X is the set of values recorded for a signal across all indi-
viduals, x is one instance of the set X, min(X), max(X) indicate
minimum and maximum of the set X.

"For effect size f=0.25 under a = 0.05 and power (1-f3) = 0.95, with 10 repeated mea-
surements within factors, we need 20 participants.
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4.1.2  Valence-Arousal Ratings Transformation. Valence and arousal
self-reports corresponding to each video were collected from ev-
ery participant. In line with the study by Ghosh et al. [11] which
revealed that no videos were rated as very negative (valence scores
<= 2), valence scores were grouped into positive or non-positive cat-
egories depending on whether they were > 3 or < 3, respectively.
Similarly, arousal scores were categorised as high or non-high scores.
Following Russell’s dimensional model of emotion, positive versus
non-positive valence and high versus non-high arousal relates to
emotion categories mapped along the axes of valence and arousal
[46].

4.1.3  Signal Cleaning and Sensor Sampling. We streamed contin-
uous data from the FLIR thermal camera that recorded thermal
images; the wearable eye tracker which recorded pupil diameter,
and Empatica wristband which recorded skin conductance in the
form of galvanic skin response (GSR) and heart rate in the form of
blood volume pulse (BVP). First, missing and incorrectly captured
values (for eg. NaN) were removed from sensor readings (approxi-
mately 3% samples). Furthermore, since the signals had different
sampling rates (thermal camera: 30 FPS, eye tracker: 200 Hz, wrist-
band - GSR: 4 Hz and BVP: 64 HZ), we sampled every signal at a
uniform rate of 30 Hz (corresponding to facial thermal camera). BVP
was further filtered using second order Butterworth lowpass filter-
ing and Stationary Wavelet Transform (SWT) 7th level Daubechies
mother wavelet [36]. Inter-beat Interval (IBI) that represents in-
termittent heart rate 8 was extracted from BVP and used for the
analysis. The raw GSR signals were first filtered using a low-pass
filter with a 2 Hz cutoff frequency to remove noise. Then, changes
were calculated using the mean of the non-negative, first-order
differential of GSR signals [10, 55].

Parameter Values
Total thermal frames 6,594
Total GSR samples 6,594
Total IBI samples 6,594

Total pupil diameter (PD) samples 6,594 (for each eye)
Total valence self-reports 210 (Pos: 60.0%. Non-pos: 40.0%)
Total arousal self-reports 210 (High: 68.6%, Non-high: 31.4%)

Table 2: Final dataset details after pre-processing.

4.2 Emotion Self-report Variation across
Pedestrian Action Videos

We first examined the variance in emotion self-report (valence,
arousal) ratings across positive and non-positive pedestrian crossing
action types as observed in the videos. The median valence ratings
for positive and non-positive actions are 6 and 4, respectively. Since
the Shapiro-Wilk test revealed that the responses did not follow
a normal distribution (p < 0.05), we ran a Mann-Whitney U test
to evaluate the difference in the responses from the 9-point Self
Assessment Manikin (SAM) scale. Figure 2a shows a significant
effect of action type on valence ratings (U = 8317, Z = -6.44, p < 0.05,

8https://support.empatica.com/hc/en-us/articles/360030058011-E4-data-IBI-
expected-signal
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(a) Valence rating comparison  (b) Arousal rating comparison
Figure 2: Comparison of emotion self-report ratings across
different action types present in the video: (a) valence rating
(b) arousal rating. Mann-Whitney U test shows both valence
and arousal self-report scores to vary significantly (p < 0.05)
between two action types.

r = 0.44). Similarly, the median arousal ratings for the positive and
non-positive actions are 5 and 6, respectively. Once again, Mann-
Whitney U test revealed a significant effect of action type on the
arousal ratings (U = 3023.5, Z = 5.74, p < 0.05, r = 0.40), as seen in
Figure 2b.

4.3 Physiological Signal Variation across
Pedestrian Action Videos

x € x
__ 101 £100 l
B 0.81 0 .99
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z Pos Non-Pos % Pos Non-Pos
Action type z Action type
(a) IBI variation (b) mean PD variation
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< 0.100
O0.075
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0 0.025
£ 0.000 =
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(c) GSR change variation

Figure 3: Variation in physiological signals for different
pedestrian action types: (a) IBI variation (b) mean PD vari-
ation (c) GSR change variation. All values are found to vary
significantly (p < 0.05) using Mann-Whitney U test.

We next investigated the variations in IBI, mean pupil diameter
(PD) and GSR changes across positive and non_positive action types.
Box-plots in Figures 3a, 3b, and 3c show these changes between
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two action types (as observed in the videos) for the IBI, mean PD,
and GSR signals respectively. A Shapiro-Wilk test showed that IBI
values are not normally distributed (p < 0.05)°. Despite having an
equal number of positive and non-positive actions, the variability
in the action duration resulted in unequal samples being collected
from the two action types. As a result, we performed an unpaired
Mann-Whitney U test. The median IBI (normalized) for positive
and non-positive actions are 0.664 and 0.629, respectively. Here,
we find a significant effect of action type on the IBI values (U =
4031220, Z = -4.10, p < 0.05, r = 0.05). Next, the median value of mean
PD (normalized) for positive and non-positive actions are 0.974 and
0.988, respectively. We find a significant effect of action type on
mean PD (U = 209373, Z = 62.574, p < 0.05, r = 0.81). Finally, median
changes in GSR are found to be 0.002 and 0.006 for positive and
non-positive actions. We again observe a significant effect of action
type on GSR change (U = 159294, Z = 14.479, p < 0.05, r = 0.37).

* —_ p—
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Dogt—1  f----- So4r [

ERP I S Q
£0.2 £ 0.2
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< Pos Non-pos 5 Pos Non-pos
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(a) IBI variation

(b) Mean PD variation
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£0.00t - — L
o) Pos Non-pos
z valence

(c) GSR variation

Figure 4: Variation in physiological signals for different
level of valence: (a) IBI variation (b) Mean PD (Pupil Di-
ameter) variation (c) GSR variation. GSR and IBI values are
found to vary significantly (p < 0.05) for valence using Mann-
Whitney U test.

We also compared the changes in physiological signals across
two levels of self-reported valence (positive vs non-positive) and
arousal (high vs non-high) scores. Figure 4 shows the IBI, mean
pupil diameter (PD), and GSR changes boxplots across positive and
non-positive levels of valence. Mann Whitney’s U tests revealed a
significant effect of valence level on IBI values (U = 2485728, p =
0.000, r = 0.295) and GSR values (U = 6444711, p = 0.015, r = 0.094).
However, we do not find a significant effect of valence level on mean
PD. Similarly, Figure 5 shows the variance in physiological signals
for high and non-high levels of arousal scores. The Mann-Whitney

9We have the same finding for mean PD and GSR changes.
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Figure 5: Variation in physiological signals for different
level of arousal: (a) IBI variation (b) Mean PD (Pupil Diame-
ter) variation (c) GSR variation. GSR, IBI and mean PD val-
ues are found to vary significantly (p < 0.05) using Mann-
Whitney U test.

U test shows that arousal level has a significant effect on all three
signals: IBI (U = 1939099, p = 0.000, r = 0.357), mean PD (U =
4693302, p = 0.017, r = 0.098) and GSR (U = 4249954, p = 0.000,
r =0.075).

4.4 Facial Temperature Variation across
Pedestrian Action Videos
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(a) ROIs given facial landmarks. (b) Automatically generated ther-

mal ROIs.

Figure 6: Facial landmarks are used to automatically gener-
ate different ROIs on the face from which the thermal fea-
tures are extracted.

Facial images (frames) captured by the thermal camera were
analysed to understand variance in facial temperatures across par-
ticipant self-reports (valence and arousal). For this, we extracted



Investigating Affective Responses toward In-Video Pedestrian Crossing Actions...

frame-level median values from different regions of interest (ROIs)
of the face: face, mouth, nose, and cheeks (both sides).Figure 6 shows
a representative thermal image with different ROIs tagged for a
subject. We extracted and aggregated median values of ROIs on
each frame for all users. We grouped median values independently
into two categories based on the self-reported values of valence
(positive vs non-positive) and arousal (high vs non-high) and exam-
ined the valence-wise and arousal-wise variation for different ROIs.
A Shapiro-Wilk test revealed that median values did not follow a
normal distribution (p < 0.05). The Mann-Whitney U test therefore
revealed that the frame-wise median values for all ROIs vary sig-
nificantly (p<0.05 for two levels of valence (Figure 7) and arousal
(Figure 8) respectively.

The summary statistics for median valence variation are as fol-
lows - Face: U =276813407.0, p < 0.05, r = 0.249; Nose: U = 285484450.5,
P <0.05,r=0.156; Mouth: U = 291888256.0, p < 0.05, r = 0.154; Cheek1:
U = 304665302.0, p < 0.05, r = 0.107; Cheek2: U = 299927749.5, p <
0.05, r = 0.114. The summary statistics for median arousal variation
are as follows - Face: U = 252934818.5, Z = 0.000, p < 0.05, r = 0.251,
Nose: U = 258534915.0, p < 0.05, r = 0.153; Mouth: U = 269701814.5, p
< 0.05, r = 0.134; Cheek1: U = 274233501.0, p < 0.05, r = 0.105; Cheek2:
U = 274306008.5, p < 0.05, r = 0.068.

5 DISCUSSION

In this section, we discuss the key findings from our controlled
lab study and highlight future steps to be undertaken to address
limitations in our work.

5.1 Key Findings and Implications

To validate whether the positive and non-positive JAAD video
stimuli can induce emotion in participants (cf. Section 3.2.1), we
designed and executed an exploratory, in-lab setup using a combi-
nation of thermal, physiological and eye tracking sensors to record
participants’ affective states in response to non-verbal, pedestrian
crossing videos. Our in-lab study showed the influence of non-
verbal, pedestrian actions on participants’ physiological responses,
facial temperature as well as emotion self-reports: (a) First, we ob-
serve that participants’ self-reported emotions vary across positive
and non-positive pedestrian crossing actions (Figure 2). Positive,
non-verbal actions (as shown in the videos) elicit higher valence
ratings, whereas non-positive actions (as shown in the videos)
elicit higher excitement. (b) We observe that physiological signals
(IBI, mean PD, and GSR) vary significantly for positive versus non-
positive pedestrian actions (Figure 3). Furthermore, different levels
of valence (positive, non-positive) are influenced by pedestrian ac-
tion types (positive, non-positive) for IBI and GSR signals; while
different levels of arousal (high, non-high) are influenced by pedes-
trian action type (positive, non-positive) for all signals. (c) Similarly,
we find variation in facial temperatures across different emotion
self-reports. Median values observed at different ROIs (face, mouth,
nose, cheeks) of the thermal images are found to vary significantly
between different types of actions and valence and arousal self-
reports.

Results from our study have implications in the field of auto-
matic, timely, in-vehicle driver emotion detection and recognition
that use machine learning models to infer driver emotions given
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Figure 7: Median valence variation in frame-wise ROIs for:
(a) Face (b) Nose (c) Mouth (d) Cheek1 (e) Cheek2. All ROI
frame-wise median values vary significantly (p < 0.05)
across two levels of valence using Mann-Whitney U test.

various driver behavioural and bio-physiological signals. First, our
in-lab study validated the suitability of the selected 10 JAAD videos
in inducing participant affect, which can be used in future studies as
driver affect-inducing stimuli. Moreover, identification of suitable
driver affective cues from this study (IBI, GSR, mean PD and facial
temperature) can aid researchers in selecting the appropriate sens-
ing modality for detecting emotion signals related to non-verbal,
pedestrian crossing actions. This can facilitate the development
of (supervised) machine learning models for automatic emotion
recognition and subsequent emotion-regulation. Our study also
demonstrated the influence of non-positive, pedestrian crossing
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Figure 8: Median arousal variation in frame-wise ROIs for:
(a) Face (b) Nose (c) Mouth (d) Cheek1 (e) Cheek2. All ROI
frame-wise median values vary significantly (p < 0.05)
across two levels of arousal using Mann-Whitney U test.

actions on participants who reported higher arousal upon viewing
such non-positive videos. These pedestrian crossing actions can
thereby aid in identification of potential on-road factors that may
elicit risky driving behaviour [5, 47], which is a significant area of
affective automotive research.

5.2 Towards Just-in-time Interventions using
Physiological and Camera Sensors for
Emotion Regulation

We observed significant variation in participants’ physiological
signals upon observing pedestrian crossing action videos. However,
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the extent to which such signals are robust enough to provide just-
in-time interventions, necessary for an empathic vehicle that can
facilitate drivers to self-regulate their emotion in situ remains an
open question [5]. Our initial results provides a first step towards
the development of machine learning models that can leverage
such physiological signals for automatic emotion recognition. In a
self-regulation context, this can become a binary classification task
(for eg. real-time stress detection [17]) during encounters with such
pedestrian actions, which can aid subsequent emotion-regulation.

Furthermore, in a real-world driving context expecting drivers to
provide self-reports across different intervals is impractical. While
our study necessitated the need for establishing a ground truth to
investigate if such effects exist in the first place, real-world contexts
would benefit from considering other sensing modalities, includ-
ing camera-based sensors, positioning sensors (e.g., GPS), mapping
data (e.g., open street maps[16]), and driving characteristic (e.g.,
average speed, road type, CAN bus data, etc.) [24]. Cameras in the
vehicle allow detecting not only driver facial expressions (which
can support the task of automatically identifying in situ emotion
expressions), but may also be used for remote physiological marker
detection (using for eg. remote Photoplethyography (rPPG) [57]
to automatically estimate heart rate). To circumvent the need for
widely annotated datasets and extract useful end-to-end features,
self-supervised feature learning techniques [48] can be leveraged
to make predictions based on the current physiological state of
a driver, given the traffic encounter they find themselves in. The
specific context of pedestrian crossings would be inferred using a
combination of positioning and mapping data. While this allows
scaling our approach, some physiological signals such as GSR do re-
quire contact-based wearable sensors, which may limit their scaling
potential.

5.3 Limitations and Future Work

There are four open challenges that emerged from this study: First,
as the study was an in-lab controlled setup with participants that
had primarily an academic background, it lacks ecological validity.
This is because we do not test users in a real driving context, and
participants’ background may have influenced their perceptions of
the pedestrian crossing actions. Nevertheless, our study aimed to
firstly identify whether such pedestrian actions influence emotion
perceptions, and how these are reflected using camera and physi-
ological sensors. Our future work will involve designing a hybrid
simulator setup with participants comprising diverse professional
and educational backgrounds, driving in a simulator but interacting
with real-world pedestrian crossing actions.

Second, the stimuli (videos) in our study came from an exist-
ing public dataset that depicts real-world driving events. Videos
often contained background objects (e.g., cars) or more than one
pedestrian crossing at the same time. This made identifying the rel-
evant pedestrian or event from the video impacting a participant’s
affective state a challenge. Nevertheless, our analysis reveals that
the positive and non-positive crossing actions in the videos influ-
enced participants’ self reported emotions, physiological signals
(IBL, mean PD and GSR) and facial temperature. Future work could
isolate the impact of visual stimuli on participants’ affective states
by also tracking eye movements across the stimuli to pinpoint the
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regions of the stimuli causing affective changes in participants.
Third while this work focused on behavioural and physiological
analysis of participants, the effectiveness of our dataset for driver
affect prediction such that it may be used for automatic in-vehicle
driver emotion detection and regulation remains open. However,
our quantitative analysis did reveal that there is statistically sig-
nificant variation across affective responses to pedestrian actions,
which allows future training of supervised machine learning models
for carrying out such affect state inferences.

Lastly, while we showed that self-reported valence and arousal
levels vary according to the videos observed, we cannot make
further inferences regarding the exact emotions drivers may expe-
rience in real world. For example, inferring that low valence and
high arousal relates to general aggressive driving (cf., [47]) versus a
specific situation that elicited such states, would be erroneous. Such
inferences would require considering other sensed data, including
scene understanding, driving characteristics (e.g., from CAN bus
data), and positioning and mapping data. Nevertheless, even with a
combined sensing sensing approach, we believe that for any auto-
mated emotion regulation intervention stemming from an empathic
car, the interaction may still require a final verification from the
user to avoid any false positives, which subsequently helps build
more robust self-report emotion annotations.

6 CONCLUSION

Inferring driver affective states during non-verbal driver-pedestrian
interactions is key for developing empathic, in-car interfaces. This
is especially so given that positive, implicit communication between
drivers and pedestrians has been known to influence driving be-
haviour [7, 28, 53]. In this exploratory work, we investigated the
impact of non-verbal, pedestrian crossing actions from the JAAD
dataset on affective responses (emotion self-reports, physiological
responses and facial temperatures) of participants with driving ex-
perience. Our in-lab study (N=21) revealed the influence of video
stimuli (pedestrians crossing and performing non-verbal actions)
on participants’ valence and arousal self-reports, IBI, GSR, mean
pupil dilation and facial temperatures. Specifically, participants
reported higher valence and arousal from watching positive and
non-positive pedestrian crossing actions. Participants’ heart rate
(IBI), mean pupil movements (mean PD), skin conductance (GSR)
and facial temperatures (across face, mouth, nose and cheeks) signif-
icantly varied in response to the pedestrian crossing action observed
from the videos. By validating the suitability of video stimuli of
non-verbal, pedestrian crossing actions through empirical evidence,
our results serve as the basis for development of automatic, in-car
empathic interfaces. These interfaces as part of a real-time emotion
recognition pipeline can infer drivers’ affective states (based on ob-
served pedestrian actions) and aid in "just-in-time" driver emotion
regulation for improved road safety.
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